Bethel University

Spark

All Electronic Theses and Dissertations

2021

Vaginal Microbiomes and Preterm Labor/Birth

Stephanie Dayl Feltman Bethel University

Follow this and additional works at: https://spark.bethel.edu/etd

Recommended Citation

Feltman, S. D. (2021). *Vaginal Microbiomes and Preterm Labor/Birth* [Master's thesis, Bethel University]. Spark Repository. https://spark.bethel.edu/etd/716

This Master's thesis is brought to you for free and open access by Spark. It has been accepted for inclusion in All Electronic Theses and Dissertations by an authorized administrator of Spark.

VAGINAL MICROBIOMES AND PRETERM LABOR/BIRTH

A MASTER'S PROJECT SUBMITTED TO THE GRADUATE FACULTY OF THE GRADUATE SCHOOL BETHEL UNIVERSITY

BY

Stephanie D. Feltman

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN NURSING

MAY 2021

BETHEL UNIVERSITY

Vaginal Microbiomes and Preterm Labor/Birth

Stephanie D. Feltman

May 2021

Approvals:

Project Advisor Name: Dr. Jane Wrede, PhD, APRN, CNM
Project Advisor Signature:
Second Reader Name: Katrina Wu, APRN, CNM
Second Reader Signature: Katho Man
Director of Nurse-Midwifery Program Name: Dr. Jane Wrede, PhD, APRN, CNM
Director of Nurse-Midwifery Program Signature:
7

Acknowledgments

I am thankful for our Heavenly Father who has guided me and allowed me the opportunity to take this journey to being a Midwife. I am thankful to Bethel University and the admission committee for having faith in me in choosing me to be a part of their program. Thank you to my husband Greg and my children Joshua, Caleb, Zachariah, Gabriel, Benjamin, Samuel, Jordan, Carter and Abby for your love and support during this long journey. Thank you to my editor Rebecca Otterness for all your kindness and guidance. You have helped me to write a paper that I can truly be proud of. I am grateful for all your hard work and support that you provided me. Thank you to my colleague Katie Augspurger, CNP for your constant support of my educational endeavors and the kindness and friendship that you have shown me. Thank you so much for working your days off and picking up extra days to help me so that I was able to complete clinicals. Thank you to Dr. Jane Wrede Nurse-Midwifery faculty and capstone advisor, who provided me with guidance and helped me to pick a very important and significant topic. Thank you to Dr. Julie Ann Vingers, Nurse-Midwifery faculty, who has been an inspiration to me throughout this journey. Your spirit, compassion, devotions and example have been invaluable to me. I highly respect you as a teacher, preceptor and professional. You have been and will always be an integral part of this journey and I will carry your messages and encouragement throughout my continuing journey and life. You have helped to provide me strength and uplifted me with your words allowing me to continue through all the ups and downs. You will be remembered always.

Stephanie D. Feltman

Abstract

Background/Purpose: Current standards of care for decreasing the incidence of preterm labor and preterm birth are not decreasing the public health burden of spontaneous preterm birth. Preterm labor and birth contribute to the high infant mortality rate in the United States and around the world. The purpose of this paper is to review and examine research articles regarding the vaginal microbiomes and their association with preterm birth and preterm labor. A better understanding of the microbiome and how it influences labor may be a key component to reducing preterm labor and birth and ultimately decrease the infant mortality rate in the US. **Theoretical Framework**: The Life Perspective Rhythm Model is used in the delivery of nursing care. The primary purpose of nursing is the promotion and maintenance of an optimal level of wellness and health for the patient. There are four main constructs to the model which include person, health, wellness, and metaparadigm of nursing.

Methods: Twenty-three research articles were thoroughly studied to answer the questions, "How do the vaginal microbiome community states relate to preterm labor and birth?" and " If the microbiome is implicated, are there any interventions that can alter the microbiome to reduce preterm birth?"

Results/Findings: Several microbiome environments were found to be associated with preterm labor and preterm birth. These primarily were those associated with microbiomes dominated by *Lactobacillus iners* and *Lactobacillus jensenii* as well as other pathogens and *Lactobacillus spp*. depleted environments. Microbiome environments protective against preterm labor and preterm birth were dominated by *Lactobacillus crispatus* and *Lactobacillus gasseri*. Differences were noted among various racial and ethnic groups with higher incidence of negative microbial composition and preterm birth in the African American and Hispanic population. Risk factors in

all ethnic groups included high BMI, poor diet, negative health behaviors, and stress. Potential interventions were discussed among these as well as the potential for the use of oral probiotics to decrease the incidence of preterm labor and preterm birth.

Implications for Research and Practice: Long term, further understanding of the vaginal microbiome and the role it plays in preterm labor and preterm birth can help to define what is a healthy microbiome during pregnancy and help to develop strategies that can promote normal microbiota during pregnancy.

Keywords: "Bacteria"; "Lactobacillus crispatus (L. iners)"; Lactobacillus iners (L. iners) "; "Lactobacillus gasseri (L. gasseri)"; "Lactobacillus jensenii (L. jensenii)"; "Lactobacillus species (L. spp.)"; "microbiomes"; "Preterm birth (PTB)"; "Preterm labor (PTL)"; "Preterm premature rupture of membranes (PPROM)"; "Spontaneous preterm birth (sPTB)"; "Vaginal microbiota"; "Viruses".

Table of Contents

Acknowledgements
Abstract4
Chapter I: Introduction9
Physiology10
Statement of Purpose11
Evidence Demonstrating Need
Significance to Nurse-Midwifery12
Theoretical Framework14
Summary17
Chapter II: Methods
Search Strategies
Inclusion and Exclusion Criteria19
Criteria for Evaluating Research Studies20
Number and Types of Studies Selected21
Summary22
Chapter III: Literature Review and Analysis
Introduction
Synthesis of Major Findings23
Protective microbiome23
L. crispatus25
L. gasseri
Lactobacillus dominance

Non-protective microbiome27
Lactobacillus depletion28
Other dominant vaginal flora28
L. Iners/L. jensenii
Variations
Body Mass Index
Race/Ethnicity/Genetics
Viruses
Stress/Support for healthy behaviors
Interventions
Antibiotics
Nutrition/probiotic foods and supplements
Progesterone41
Critique of Strengths and Weaknesses41
Strengths41
Weaknesses42
Summary42
Chapter IV: Discussion, Implications, and Conclusions44
Literature Synthesis & Implications for Midwifery Practice44
Recommendations for Future Research
Applications and Integration of Theoretical Framework51
Conclusion
References

Appendix A: Microbiology Glossary	
Appendix B: Matrix	

Chapter I: Introduction

Preterm birth is one of the primary causes of perinatal mortality and morbidity throughout the world (Kindinger et al., 2017). Preterm labor and birth are considered the world's primary cause of premature death in children under the age of five. Annually, approximately 11% of all births in the world are premature, with one million out of six million reported child deaths resulting from complications of prematurity (Garcia-Basterio et al., 2017). The United States has a 5.8% infant mortality rate, compared to the average of all other countries in the world at 3.5% (CDC, 2020). Preterm rupture of membranes prior to the onset of labor (PPROM) occurs in approximately 30% of all spontaneous preterm births (sPTB) and is correlated with an increase in vaginal bacterial diversity that occurs prior to the onset of membrane rupture (Brown et al., 2019).

In 2019, preterm birth occurred in 1 out of every 10 births within the United States. The various types of bacterial communities that are present within the lower female genital tract play a significant role in maternal/fetal health (Freitas et al., 2018). The state of pregnancy alone contributes to changes in the vaginal microbiome. These changes occur throughout pregnancy. The underlying physiology present in pregnancy has the ability to impact bacterial and viral communities within the vaginal microbiome. When increased diversity is present, the incidence of preterm birth increases significantly. Changes in the diversity of the vaginal virome are similar to changes that occur within the vaginal microbiome during pregnancy, indicating the underlying physiologic changes that occur in pregnancy possibly regulates both bacterial and viral communities (Wylie et al., 2018). Because microbiology terms may be a challenge to the reader a glossary has been created and can be found as Appendix A.

Physiology

The human body is not a sterile organism. It is the domain for millions of different microorganisms. Bacterial flora that can be found on the human body are considered to be the human microbiome with each individual having their own unique types of microbes. Many bacteria can contribute positively to human health. These bacteria provide resistance to infection, break down nutrients, and train the immune system (Walther-Antonio et al., 2014). Pregnancy is associated with significant physiological changes, and maternal niches of the microbial community structure have the potential to change and shift. Many of these changes are not harmful, but dysbiosis within the maternal vaginal microbiota may be correlated with increased incidence of adverse pregnancy outcomes such as preterm birth (Walther-Antonio et al., 2014). Vaginal dysbiosis is a shift from the most favorable vaginal microflora to bacterial diversity which is associated with adverse health outcomes. (VandeWijgert, 2017).

Within the vaginal tract, more than 50 microbial species are noted to be nonpathogenic (Kindinger et al., 2017). During reproductive years, the vaginal microbiome varies quite significantly among women. Healthy vaginal microbiomes have been found to have some protective aspects against bacterial vaginosis, sexually transmitted diseases (STD's), urinary tract infections (UTI's) and human immunodeficiency virus (HIV) (Zheng et al., 2019). This protection is associated with the presence of lactic acid-producing bacteria primarily of multiple *Lactobacillus* species (spp.) which, through competition, decrease the presence or growth of more pathologic microbes. For example, in the incidence of the presence of bacterial vaginosis there is a significant decrease in the presence of *Lactobacillus* spp. (Kindinger et al., 2017).

A number of community state types (CST) are influenced during pregnancy (Kindinger et al., 2017). These include four primary *Lactobacillus* spp. including L. *crispatus* (CST I), L. *gasseri* (CST II), L. *iners* (CST III), and L. *jensenii* (CST V). (CST IV) includes all other microbial communities that are significantly lacking *Lactobacillus* spp. but are full of primarily anaerobic bacteria. The physiologic premise is that increased amounts of circulating estrogens control accumulation of glycogen within the vaginal epithelium. Glycogen is separated by host amylase into complex sugar substances of maltotetraose and maltotriose. These develop carbon sources that serve as nutrition for the *Lactobacillus* spp. Interaction between hormone and metabolic signaling within the vaginal mucosa act in a protective manner, preventing exposure of pathogenic bacteria. This leads to greater stability of the microbiome and the community state types as gestation advances and a decrease in the incidence of individuals who have a microbial community that lacks *Lactobacillus* spp. (Kindinger et al., 2017). Within the Lactobacillus genus there are species that appear more protective and some that are concerning.

Statement of Purpose

The purpose of this paper is to review and examine research articles regarding vaginal microbiomes and their association with preterm labor and preterm birth. The questions for the literature review are, "How do the vaginal microbiome community states relate to preterm labor or birth?" and "If the microbiome is implicated, are there interventions that can alter the microbiome to reduce preterm birth?"

Evidence demonstrating a need

Worldwide, approximately 11% of babies are born prematurely prior to 37 weeks gestation. African American women are 1.5 times more likely to have preterm birth than Caucasian women and have twice the risk of very early preterm birth, prior to 32 weeks gestation (Elovitz et al., 2019). There has been limited success in developing strategies that prevent the incidence of preterm birth. Emerging research is discovering that the maternal microbiome is associated with vital functions of normal maternal health. Alterations in the microbiome may play a role in the etiology and increased incidence of preterm labor and preterm birth. Preterm birth within the United States occurs in approximately 500,000 or 1 in every 9 births. It is noted to be the primary reason for infant mortality, responsible for 35% of all infant deaths. Elovitz et al. (2019) concluded that the vaginal microbiota plays a significant part in preterm birth.

Current efforts that are being used to target women with a previous sPTB are not decreasing public health burdens associated with sPTB (Elovitz et al., 2019). Targeting the microbiome may be a new approach.

Significance to Nurse-Midwifery

Certified nurse-midwives (CNM's) are licensed and independent providers of health care with authority in all 50 states. They are required to follow standards for education and certification set by the Accreditation Commission for Midwifery Education. In August 2017, the number of licensed CNMs was 11,826 with 101 licensed certified midwifes (CMs) who are not nurses. They attend births, work in primary care and reproductive care of women. Approximately 33% of nurse-midwives work in primary care providing access to annual exams, providing medications, nutrition counseling, patient/parenting education, and reproductive healthcare. The American College of Nurse Midwives (2020) reports that approximately 53.3% of nurse-midwives attend labor and deliveries. In 2014 approximately 94.2% of nurse-midwives attended births in the hospital setting with 3% in birth centers and 2.7% in patient homes. Midwives are involved in 8.3% of all births within the United States (American College of Nurse-Midwives, 2020).

Women who receive prenatal, intrapartum, and postnatal care from a CNM are less likely to have incidence of sPTB prior to 24 weeks and require fewer medical interventions in comparison to women under the care of an obstetrician or family physician (Poltera, 2013). Compared to genetic factors, the presence of a hostile vaginal microbiota is considered a risk factor that is modifiable in prevention of PPROM (Brown et al., 2019). Identification of women at risk followed by influencing the bacterial community either through prebiotic or probiotic therapies are thought to be promising strategies in the prevention of PPROM and PTB (Brown et al., 2019).

Being able to understand and characterize the vaginal microbiota during pregnancy will help provide information that allows for prognostic, diagnostic, and therapeutic values (Romero, Nikita et al., 2014). There is potential functional and clinical significance for the nurse-midwife in understanding microbial community state types and metabolic profiles that are associated with sPTB to increase comprehension of the processes of inflammation that are correlated with sPTB (Stafford et al., 2017). To enable the midwife to create strategies that prevent negative reproductive outcomes, it is important to have knowledge and understanding of microbiome community state types and their role in the incidence of sPTB and PPROM.

Some of the hallmarks of Midwifery that would pertain to this topic are "Incorporation of evidence-based care into clinical practice", "Utilization of health promotion, disease prevention, and health education", and "Incorporation of evidence-based integrative therapies' (American College of Nurse-Midwives, n.d.). Applicable pearls of midwifery would be the use of appropriate interventions that are based on the best available clinical evidence, interprofessional education, and collaboration to enhance optimal patient outcomes. Most important in relation to this topic would be to practice according to the most up to date evidence and to continue with interprofessional learning activities to expand knowledge base. Participating in research opportunities is also essential in improving patient outcomes and for shared learning (American College of Nurse-Midwives, n.d.).

Many routine practices in prenatal care and in labor and birth environments are associated with the potential to influence the microbiome. Ensuring safe progression of labor often includes multiple cervical examinations, internal fetal heart rate monitoring, and uterine contraction monitoring. Many of these tasks are important but need to be used with clinical judgment to ensure that the disturbance to the microbiome is minimized as much as possible (Cahill et al., 2012).

One significant issue is cervical examinations that have the potential to introduce or facilitate infection. Patient education is a primary role of the nurse-midwife. Patients should be offered education about the prenatal influences associated with the microbiome, birth route associated factors, and antibiotic use during pregnancy. Even though the relationships between the microbiome and health outcomes are not completely understood, midwives are in a position to provide evidence-based care and education in regard to the adoption of healthy behaviors that have the potential to promote a healthy microbiome (Cahill et al., 2018).

Theoretical Framework

The Life Perspective Rhythm Model is a model developed by theorist Dr. Joyce Fitzpatrick in 1989 that was based on the model of practice developed by Martha Rogers of the Theory of Unitary Human Beings. Martha Rogers' Science of Unitary Human Beings describes global concepts of human being, environment, health, and nursing. The theory is focused on unitary human environment mutual processes. Instead of health and illness, Rogers defines health as a statement of the life process. She describes four aspects to this process. Energy field, openness, pattern, and pan dimensionality. Human and environment in conjunction influences processes of change that improve health. When addressing the health and treatment of a patient, the patient cannot be divided from their environment. Martha Rogers theory included eight separate areas. Fitzpatrick further refined this theory building her theory on four subdivisions (Nursing Theory, 2020).

The Life Perspective Rhythm Model consists of four constructs that involve the delivery of nursing care. The focus of the model is to view the differing components in life experiences as rhythms. Human development is centered along varying rhythms allowing humans to learn communication and interaction with those around them. Nursing uses these rhythms to achieve optimal wellness for patients through the use of the concepts of person, health, wellness, and metaparadigm. The medical field is often consulted when any rhythm reaches a high point or a low point in patient health status. Nursing is responsible to understand and to help the patient with putting their rhythms back together in order to support all of the other rhythms of the body. The goal is to return to a state of health. Rhythm refers to the regular and recurrent quantitative changes that occur in a variable biological process. They can be described, are measured, and will repeat. The stages of life and illness are equated to rhythms. The principal purpose of nursing is promoting and maintaining optimal levels of wellness and health for patients (Nursing Theory, 2020).

This is a useful model for studying different methods for identification of modifiable factors within the vaginal microbiome that may lead to preterm labor/birth. The four main constructs to this model include person, health, wellness, and metaparadigm of nursing. Understanding all of these areas are significant to ensure successful outcomes for patients. The person is not just the patient but all those who interact with the person in their environment. The human being is considered an open system with specific rhythmic behaviors. These behaviors are drawn from several areas including the culture of the patient and their surrounding society (Nursing Theory, 2020).

Health focuses on the health of the patient and their environment. Health also includes all those around the patient who have an effect on the patient. To ensure optimal health, patients need the assistance of healthcare providers, a willingness to change and the ability to follow recommendations for a healthy life. The support of family and friends is an essential component of the environment. Optimal health is the goal and nursing professionals work to improve health through all interactions with the patient (Nursing Theory, 2020).

Wellness refers to being in a state of optimal health. It is important that providers learn techniques to promote wellness through encouraging healthy lifestyle changes and habits. In understanding the whole patient and their environment and how these interactions affect them, the midwife is able to make a complete assessment of the patient. Determination can be made of any factors that may be modified to ensure a healthy vaginal microbiome. This allows for a healthy pregnancy with the goal to decrease preterm labor/birth. The patient's willingness to provide information and follow any recommendations is essential (Nursing Theory, 2020). The midwife role of educator is used to decrease any negative maternal or neonatal outcomes that may occur related to vaginal dysbiosis during pregnancy.

The metaparadigm of nursing recommends how the profession should function. It begins with the nurse having a wholistic understanding of the patient, their life, and environment. The nurse includes the patient's social situation as part of the assessment of wellness. Finally, the responsibility of the nurse to the patient is defined by expectations that nursing will incorporate theory, practice, and procedures that become standardized to help support each individual patient in each situation. The use of this model helps to integrate a complete professional action plan for each patient. Each individual needs to have their own specific care plan that is formulated for them. Using this theory that includes the concepts of life cycle, wellness, as well as maintenance, can be used in any culture or setting (Nursing Theory, 2020).

Summary

Preterm labor and birth contribute to the high infant mortality rate in the United States and around the world. A better understanding of the microbiome and how it influences labor may be an essential component in reducing preterm labor and birth and ultimately decrease the infant mortality rate in the US. Nurse-midwives are significant providers of primary care for women and their reproductive health. They are in a position to ensure optimal pregnancy outcomes for their patients through knowledge and evidenced-based practice. By using Fitzpatrick's Life Perspective Rhythm Model, the patient is assessed as a whole and determination can be made of any modifiable factors that the patient may incorporate. It is a model that helps the midwife to fully know and understand each patient which then allows for meeting the goal of a healthy pregnancy and positive maternal/neonatal outcomes.

Chapter II: Methods

Chapter two outlines the methods used to identify and select the research articles that are discussed in the literature review. Each of these studies related to vaginal microbiomes and the role these play in the incidence of preterm labor and preterm birth. This chapter will discuss the search strategies used as well as the inclusion and exclusion criteria applied to those searches, and the number and type of studies found. The Johns Hopkins Nursing Evidence-Based Practice: Model and Guidelines (Dearholt & Dang, 2012) critiquing criteria are reviewed and will be used to evaluate the articles.

Search Strategies

The purpose of this critical appraisal of the literature was to determine the role that vaginal microbiomes may play in the incidence of preterm labor and preterm birth. An initial search utilizing the database CINAHL and limiting the results to peer-reviewed articles, written in English, using the terms "microbiome preterm birth" or "microbiome pregnancy" or "microbiome preterm labor" or "microbiome women's health pregnancy" yielded 419 articles, 416 of which were from the years 2010-2021. The same search terms were applied to the database PubMed, which yielded 2,999 results. After limiting the results to the years 2010-2021, 2,932 results remained. The initial search was limited to studies that were published in the last 10 years to include the most recent and relevant research on this subject.

In order to ensure a complete and thorough search, data mining was also used to allow for formulation, analyses, and basic induction processes that help in determining the most relevant information and knowledge needed for the review. Most of the articles published in regard to vaginal microbiomes and preterm labor or preterm birth were published within the past ten years. Duplicates were removed, and inclusion and exclusion criteria listed below were applied to the remaining articles.

Inclusion and Exclusion Criteria

The following inclusion criteria were utilized: 1) Research studies; 2) Studies with pregnant women aged 18-40; 3) Healthy viable singleton pregnancy; 4) Studies with pregnant woman willing and able to give informed consent; 5) Studies discussing the role of vaginal microbiomes and effects in pregnancy; 6) Studies with reference to the correlation of vaginal microbiomes and preterm birth; 7) Studies with reference to the correlation of vaginal microbiomes and preterm birth; 7) Studies with reference to the correlation of vaginal microbiomes and preterm birth; 7) Studies with reference to the correlation of vaginal microbiomes and preterm labor. Exclusion criteria were: 1) Non-research studies; 2) Studies on non-humans; 3) Systematic reviews; 4) Literature reviews; 5) Studies in non-pregnant females; 6) Emergency obstetric care required; 7) Pregnant women with medical or obstetrics complications that would make it difficult to comply with study requirements.

After applying inclusion and exclusion criteria, 160 articles remained. Remaining articles were evaluated to determine the degree of relevance to the topic of vaginal microbiomes and preterm labor/birth. Following evaluation and review of titles and abstracts, the level of evidence of each study was determined as well as the overall quality of the studies. Classifications of quality were determined with the use of the John Hopkins Nursing Evidenced-Based Practice: Model and guidelines (Dearholt & Dang, 2012). This helped in determination of low, good, or high-quality research. This tool allowed for the ranking of the evidence sources to determine the strength that the evidence provided.

Criteria for Evaluating Research Studies

Some research designs are more powerful in being able to answer specific research questions on the effects that may be present or interventions that may be used. This has helped to develop the hierarchy of evidence that allows a framework for ranking the evidence and any applicable interventions. It also helps in determining which studies should be given the most weight when evaluating the same question from differing types of studies (Akobeng, 2005).

The Johns Hopkins Nursing Evidence-Based Practice: Model and Guidelines (Dearholt & Dang, 2012) classifies research articles according to their level and quality. Level I studies include experimental studies, randomized controlled trials (RCT), and systematic reviews of RCTs.

Randomized control trials are considered to be the most rigorous scientific method to help in determining the effectiveness of recommended interventions. Bias can occur when there are flaws in the design and management of a trial. It is significant for individuals who are reading medical reports to be able to develop the skills to critically appraise randomized controlled trials. Also significant is the ability to assess the trial methodology and the validity, magnitude as well as precision of the treatment effect and how applicable the results may be for use. (Akobeng, 2005).

Level II studies include quasi-experimental studies and systematic reviews of a combination of RCTs and quasi-experimental studies. Level III studies can include both non-experimental studies and qualitative studies as well as systematic reviews of 1) a combination of RCT's, quasi-experimental, and non-experimental studies; 2) non-experimental studies only; and 3) qualitative studies with or without a meta-synthesis. Level IV studies are non-experimental but include opinions of respected authorities, nationally recognized expert committees, or panels based on scientific evidence.

The quality of each article is ranked as high, good, or low based on the consistency of the results, sample size, design, level of control, and definitive conclusion (Dearholt & Dang, 2012). Research quality is divided into three sections categorized as A, B, and C (Dearholt & Dang, 2012). High quality (A) has consistent generalizable results. There is sufficient sample size with adequate control with definitive conclusions and consistent recommendations gathered from comprehensive literature review and reference to scientific evidence (Dearholt & Dang, 2012). Good quality (B) research contain reasonably consistent results with sufficient sample size, some control, fairly definitive conclusions and consistent results with sufficient sample size, some control, fairly definitive conclusions and consistent results (Dearholt & Dang, 2012). The lowest level is low quality (C) which often has inconsistent results, insufficient sample size or study design used, and no conclusions can be drawn (Dearholt & Dang, 2012).

Articles were evaluated for strength and quality using the Johns Hopkins Research Evidence Appraisal Tool (Dearholt & Dang, 2012). For the purpose of this literature review only studies at a level of III or higher were accepted. All systematic reviews were excluded. Following determination of level of evidence, the literature was reviewed for quality. All literature used in this study was; of high and good quality except for one study which had a small sample size and used an observational nature of study but did have supporting and similar results as all other literature chosen.

Numbers and Types of Studies Selected

Twenty-three research articles were part of this literature review, eight articles are classified as level I evidence, six articles are classified as level II evidence, and nine articles are classified as level III evidence; eleven articles met criteria for being high quality, eleven articles met the criteria for being good quality, and one article met the criteria for being low quality. The 23 articles selected for the literature review can be found in Appendix B. These articles include

two cross-sectional cohort studies, two longitudinal cohort studies, one nested case-control study, one nested case-control study in 3D cohort, two nested case-control studies within a prospective cohort study, two nested case-control studies within a prospective longitudinal study, seven prospective cohort studies, one prospective pilot study, two randomized control studies, one randomized double-blind placebo controlled trial, one retrospective cohort study, one retrospective case-control longitudinal study. Nested sampling is "an approach to sampling in mixed method studies in which some, but not all, of the participants from one strand are included in the sample for the other strand" (Polit & Beck, 2012, p. 735). The search yielded research from all over the world. The number of times a country was included in the selected research articles is as follows: United States (7), Canada (3), Japan (1), Belgium (1), Austria (1), Brazil (1), China (1), Norway (1), United Kingdom (4).

Higher incidence of studies completed on the subject of vaginal microbiomes and the association with preterm labor and birth are found within the United States. Not all countries that completed the studies were of similar economic development. No religious identification interfered with studies completed.

Summary

Identifying individuals at risk of preterm labor or birth related to the differing vaginal microbiomes present is important in early identification of risk to introduce prevention strategies to decrease the incidence of preterm labor and preterm birth. The majority of research completed on this subject has been completed within the past ten years. A thorough search of the literature was completed, and 23 articles were selected and included in the final matrix. This chapter outlined the search strategies, inclusion and exclusion criteria, the number and type of articles chosen, and the criteria by which the articles were evaluated.

Chapter III: Literature Review and Analysis

Introduction

The matrix includes purpose of the study, descriptions of the samples/settings, design methods, relevant findings, quality of each article, strengths, limitations, and recommendations for practice. It is arranged alphabetically. The purpose, design, and relevant findings of the studies were evaluated, and the data synthesis is presented in chapter three. Microbiology terms may be a challenge to the reader, so definitions are placed in a glossary at the end of the chapter to assist in understanding and having a place for reference.

Synthesis of major findings

The 23 scholarly articles appraised in this review identified vaginal microbiome composition that is correlated with increasing risk for PTL and PTB. Several themes emerged, highlighting common bacterial associations with PTL and PTB as well as associations with healthy vaginal environments. The synthesis of the major findings will address the following topics: Protective microbiome, non-protective microbiome, variations by BMI, race/ethnicity/genetics, viruses, stress, interventions of antibiotics, nutrition, probiotic foods and supplements, and progesterone that affect the microbiome.

Protective microbiome

Ten studies evaluated the microbiome of women who delivered at term (Brown et al., 2019; Kindinger et al., 2017; Petricevic et al., 2014; Romero, Nikita et al., 2014; Romero, Biede et al., 2014; Stafford et al., 2017; Tabatabaei et al., 2018; Verstraelen et al, 2009; Walther-Antonio et al., 2014; Zheng et al., 2019).

Lactobacillus spp. are the primary dominant species associated with a healthy vaginal microbiota. This genus contains key metabolites including lactic acid which maintains the acidic

and anaerobic environment that is needed to protect against pathogenic infection (Kindinger et al., 2017). The lower female genital tract primarily contains a microflora dominant with lactobacilli. Lactobacilli provide protection for the vagina against entry of ascending and systemic infectious disease (Kindinger et al., 2017).

Romero, Nikita et al. (2014) examined 32 nonpregnant women and 22 women who delivered at term between 38-42 wks. gestation to determine the healthy microbiota present in pregnancy. In this retrospective, case-control, longitudinal study, observation was made of stability patterns within the vaginal microbiota during pregnancy that could be used for a fixed point of reference. Fifteen taxa were found to change in pregnancy. Taxa are a group of one or more populations of an organism. Four dominant *Lactobacillus* spp. were found to increase and be protective with the other eleven taxa decreasing in a normal healthy pregnancy. The composition of the vaginal microbiome in healthy pregnancy changed as a function of continuing gestational age, with increases found in abundance of the four primary *Lactobacillus* spp. Healthy vaginal microbiota in pregnancy was also correlated with decreased amounts of anaerobic microbial species throughout progression of normal and health pregnancy (Romero, Nikita et al., 2014).

Normal vaginal microflora primarily consists of four distinct *Lactobacillus* species, L. *crispatus*, L. *jensenii*, L. *gasseri*, and L. *iners*. L. *crispatus* and L. *gasseri* have a stronger defense mechanism against invading bacteria than L. *iners* or L. *jensenii*. Vaginal flora that are found to be protective against preterm labor and preterm birth include L. *crispatus*, L. *gasseri* and mixed dominant *Lactobacillus* spp. These three are considered protective and for the remainder of the paper these organisms will be defined as protective collectively (Kindinger et al., 2017; Stafford et al., 2017; Tabatabaei et al., 2018; Verstraelen et al., 2009; Walther-Antonio et al, 2014; Zheng et al., 2019).

L. crispatus

Kindinger et al. (2017) evaluated the vaginal microbiome of 161 pregnant women in a cross-sectional cohort study. L. *crispatus* (CSTI) dominance was distinctly indicative of term birth (p=0.009). L. *crispatus* excretes elevated concentrations of D-lactic acid. These elevated levels of lactic acid are protective and necessary for healthy vaginal flora in pregnancy. They decrease the pH level and create an acidic environment that reduces the incidence of vaginal infection (Kindinger et al., 2017).

In a prospective pilot study, Stafford et al. (2017) observed 80 asymptomatic women at 20-22 wks. gestation, 41 asymptomatic women at 26-28 wks. gestation and 37 symptomatic women at 24-36 wks. gestation. There was a statistically significant proportion of *L.crispatus* present in the vaginal microbiome of women who delivered at term p=<0.05 (p<0.05 is considered statistically significant) (Kindinger et al., 2017; Verstraelen et al., 2009). Similar findings were observed by Tabatabaei et al. (2018) in a nested case-control study in 3D cohort of 2366 pregnant women.

A prospective cohort study of 100 pregnant women completed by Verstraelen et al. (2009) observed that among the women who delivered at term, 77 had *Lactobacillus* spp. dominated microbiota with 18 of those women specifically having dominant L. *crispatus*. Normal vaginal microflora containing L. *crispatus* have a five-fold reduction of risk of changing to atypical vaginal microflora compared to non-L. *crispatus* vaginal microflora (p = 0.04). In another prospective cohort study, Walther-Antonio et al. (2014) also identified L. *crispatus* was the dominant species associated with term birth.

L. gasseri

Stafford et al. (2017) observed benefits of L. *crispatus* and L. *gasseri* dominated microbiota. A strong association linked L. *crispatus* and L. *gasseri* (CSTII) with a healthy microbiome. Furthermore, the combination of L. *crispatus/gasseri* domination within the vaginal microbiome compared to the presence of other lactobacilli were found to improve the environment to be very beneficial to the vaginal microbiota (Stafford et al., 2017). Stafford et al. (2017) observed an absence of L. *gasseri* in preterm patient samples at 26-28 weeks gestation (p=0.03) compared to term patient samples (p<0.0001). The presence of L. *gasseri* is thought to be correlated with the incidence of pregnancies that progress to term. It is one of the health promoting *Lactobacillus* spp. L. *gasseri* that is more limited with its role in the vaginal microbiome associated with preterm birth with some lack of clarity. L. *gasseri* is more frequently seen in white populations and in vaginal microbiomes with more diversity (Stafford et al., 2017).

Lactobacillus dominance

Brown, Nikita et al. (2019) observed 1538 women in a prospective cohort study that found a *Lactobacillus* spp. dominated vaginal microbiota > 24 weeks gestational age (GA) is correlated with a decreased incidence of PPROM risk 0.39 (0.26-0.60), RR-0.43 (0.29-0.63). Relative risk is the ratio of risk present in one group compared to another group (Brown, Nikita et al., 2019). Furthermore, in a prospective cohort study of 111 women aged 18-40 with low-risk singleton pregnancies, Petricevic et al. (2014), found that dependent upon the *Lactobacillus* spp. present in pregnant women there are statistically significant differences in outcomes of term and preterm delivery (p=0.004). Women with normal vaginal microflora in early pregnancy have a 75% decreased incidence of delivering prior to 35 weeks (GA). Mixed dominant *Lactobacillus* spp. colonized with two or more *Lactobacillus* spp. Higher diversity of *Lactobacillus* spp. contributes to health and protection in pregnancy (p<0.0009). Approximately, 56% of the women in this study that delivered at term had vaginal microbiota with more than one *Lactobacillus* spp. (Petricevic et al., 2014).

In a cross-sectional cohort study, Zheng et al. (2009) evaluated 83 healthy pregnant women in all trimesters of pregnancy. Lactobacillus represented the majority of the vaginal microbiome in healthy pregnancy. L. *jensenii* (CST V), L. *iners* (CST III), and L. *crispatus* were the primary recurrent species. The amount of L. *iners* and L. *crispatus* was notably different among the three trimesters. L. *iners* decreased during the second and third trimester when compared to the first trimester (p < 0.001), while L. *crispatus* notably increased during the second trimester (p=0.030). L. *crispatus* is distinctly correlated with term delivery. Similar results were reported by Romero, Biede et al. (2014) in a nested case-control study.

An association was observed by Stout et al. (2017) that an increase in vaginal community richness, diversity, and stability are highly associated with term birth. Other studies have confirmed these same findings (Freitas et al., 2018 & Romero, Nikita et al., 2014).

Non-protective microbiome

Ten studies evaluated the microbiome of women who delivered preterm (Brown et al., 2019; Brown et al., 2018; Honda et al., 2014; Hyman et al., 2014; Jayaprakash et al., 2016; Kindinger et al., 2017; Petricevic et al., 2014; Stafford et al., 2017; Tabatabaei et al., 2018; Zheng et al., 2019). An unhealthy or imbalanced vaginal microbiome means that unhealthy microorganisms increase and reproduce rapidly in the vagina.

Lactobacillus depletion

Lactobacillus spp. depletion has been identified as an increased risk for preterm birth. When *Lactobacillus* spp. depletion is noted there is increased incidence of vaginal dysbiosis demonstrating an association with negative pregnancy outcomes such as preterm birth and late miscarriage (Kindinger et al., 2017). A vaginal microbiome that has a decreased abundance of *Lactobacillus* spp. (<75%) is correlated with a mean relative probability of preterm labor and preterm birth. A vaginal microbiome community that is dominated by other species than *Lactobacillus* spp. is associated with PPROM in all trimesters of pregnancy (Brown et al., 2019).

Brown et al. (2018) identified in a prospective cohort study of 337 pregnant women that a vaginal microbiome depleted in *Lactobacillus* spp., independent of specific species is correlated with probability of risk of PPROM in approximately 25% of cases, despite maternal attributes or other preterm birth risks. Vaginal dysbiosis associated with the depletion of *Lactobacillus* spp. was found to be present before rupture of fetal membranes in nearly one third of cases and continued following the rupture of membranes (31%, p=0.005). Thus, Lactobacillus depletion is an associated risk factor for subsequent PPROM correlated with negative short-term maternal/neonatal outcomes (Brown et al., 2018). In a cohort study of 1538 women evaluated by Brown et al. (2019) similar results were found.

Other dominant vaginal flora

Other dominant vaginal flora that have been implicated include L. *iners*, L. *jensenii*, *Mycoplasma* sp., *Ureaplasma* sp., *Provotella* genus, G. *vaginalis*, and A. *vaginae*. Honda et al. (2014) evaluated 1735 pregnant women in a randomized control study finding in the incidence of preterm birth the vaginal flora often shifts from one of normal flora to that of an intermediate flora state. Vaginal microbial communities cluster in a CST IV-B (mixed anaerobes) state are associated

with a lack of *Lactobacillus* spp. and increased amounts of G. *vaginalis*, *BVAB1*, A. *vaginae*, and *Megasphaera* sp. Freitas et al. (2019), in a retrospective cohort study of 216 pregnant women, found *Prevotella* sp. to be a biomarker for preterm birth. Increased diversity of G. *vaginalis*, A. *vaginae*, and V. *bacterium* were also reported to be correlated with increased risk of early sPTB in a nested case-control study of 2366 observed by Tabatabaei et al. (2018) (p<0.0001). Zheng et al. (2019) found similar results with *Gardnerella*, *Atopobium*, *Megasphaera*, *Eggerthella*, *Leptotrichia/Sneathia*, and *Prevotella*, accounting for the vaginal pathogenic community. In the incidence of Lactobacillus depletion these bacteria increased significantly. L.iners (p<0.001), A. *vaginae* (p=0.005), G. *vaginalis* (p=0.003), and L. *jensenii* (p=0.010) (Zheng et al., 2019).

In a longitudinal study by Hyman et al. (2014), 1572 pregnancies were evaluated for composition of the vaginal microbiota present in preterm birth. In the preterm women, several taxa including *BVAB1* (p=0.0031), *Prevotella* (p=0.0037), P. *amnii* (p=0.0031) and Sneathia *amnii* (p=0.0015) were found in abundance and associated with incidence of preterm birth.

Jayaprakash et al., (2016) found the mean gestational age of PPROM was 28.8 weeks gestation. *Mycoplasma* sp. and *Ureaplasma* sp. were found in 81% of the participants with PPROM. *Mycoplasma* sp. significantly increased the incidence of preterm birth (p<.001) (Jayaprakash et al., 2016). The presence of L. *iners* at antenatal testing at 16 weeks GA was highly correlated with a short cervix <25mm (p<0.05) and preterm birth <34 weeks GA (p<0.01; 69% PPV) in a cross-sectional cohort study of 161 women completed by Kindinger et al. (2017) in assessment of the connection linking the vaginal microbiota, cervical length, and preterm birth risk.

L. iners/L. jensenii

Petricevic et al. (2014) in a prospective cohort study of 111 pregnant women found L. *iners* to be correlated with vaginal dysbiosis during pregnancy, subsequent preterm delivery, and low birth weight. L. *iners* is associated with dysbiosis and is considered a marker indicative of microbial imbalance leading to bacterial vaginosis (Kindinger et al., 2017). If L. *iners* is noted to be the dominate species at sixteen weeks gestation, there is an elevated risk of preterm birth (p<0.01) (Kindinger et al., 2017). L. *iners* is considered the smallest group of the *Lactobacillus* spp. group and is a common bacterial species within the vagina. This species is found to demand special nutrient requirements (Petricevic et al., 2014).

In a prospective pilot study of 158 pregnant women, Stafford et al. (2017) examined differences that exist in the vaginal microbiome and metabolite profiles of term deliveries versus preterm deliveries. Vaginal pH associated with health varies from 3-4.5. Vaginal pH is a determinant of a healthy vaginal environment with elevated pH levels indicating an imbalanced vaginal environment (Stafford et al., 2017). pH levels ranged between 3.6 and 6.1 with relationship between community state types observed. pH levels are found to be higher in women who deliver preterm with increased association with the presence of L. *iners* or L. *jensenii* (CSTV) (Stafford et al., 2017). A 25%, two-fold increase was found in the presence of L. *jensenii* in women who delivered preterm. L. *jensenii* is considered a more unstable vaginal microbiome and is thought to be detrimental to a healthy vaginal microbiome during pregnancy. It is also found to be associated with L. *iners* as an organism that transitions between community state types becoming detrimental (Stafford et al., 2017).

Zheng et al. (2019) completed a cross-sectional cohort study of 83 women to assess vaginal microbiome in pregnancy. Specific species in the vaginal microbiome were found to decrease the

acidity of the vagina causing elevation of the vaginal pH leading to overgrowth of pathogenic bacteria (p<0.05) (Zheng et al., 2019).

Lactobacillus spp. depletion, L. iners, L. jensenii, Mycoplasma sp., Ureaplama sp., Provotella genus, G. vaginalis, A. vaginae, Veillonellaceae sp. Molliculite sp., BVAB1, V. bacterium, M. curtsii/mulieris, S. sanquinegens, Atropobium sp., and Megasphaera sp. are all considered nonprotective microbiome organisms. For the remainder of this paper these organisms will be referred to as nonprotective microbiome collectively.

Variations

Body Mass Index

Body Mass Index (BMI) is an individual's weight measured in kilograms divided by the square of height in meters. An elevated BMI can be an index of elevated body fat. BMI is used for screening specific weight categories that may be associated with increased incidence of health problems. It is not indicative of the body fat or an individual's health status. Two studies evaluated the association of BMI and preterm birth (Wen et al., 2014 & Oh et al., 2015). BMI is adversely associated with the existence of *Mycoplasma* sp. (mean BMI difference p=.018). and BVAB2 (mean BMI difference p=.004). This is more significant in the African American population (Wen et al., 2014).

Genetic and environmental factors are associated with obesity as well as amounts and types of food eaten, cultural practices, and socioeconomic characteristics. Within the pregnant population, women who have less gestational weight gain tend to have greater amounts of the presence of protective microbiome organisms. Dietary changes and increased activity are important factors in appropriate weight maintenance in pregnancy (Oh et al., 2015). Wen et al., (2014) found that BMI was highly correlated with the vaginal microbiome in African American women. *Mycoplasma* sp. was found to significantly increase sPTB (OR=5.70 [2.40, 14.4], P<.001) opposed to *BVAB3* that was found to drastically decrease the incidence of sPTB (OR=0.13 [0.036, 0.38], p<.001). Oh et al. (2015) observed that negative microbiome organisms increased, and positive microbiome organisms decreased associated with increased body mass index (BMI). L. *iners* dominance in the vaginal microbiome was highly associated with obesity (odds ratio [OR], 7.55 [95% confidence interval [CI], 1.18 to 48.2]), in comparison to L. *crispatus* dominance. Thus, obesity may be a contributing factor in bacterial community structure. Women with obesity have other physiological characteristics associated with dysbiosis. These characteristics include elevated estrogen levels, systemic inflammation, and decreased immune function (Oh et al., 2015).

Pre-pregnancy BMI and leptin levels can impact the outcome of pregnancy leading to preterm birth. This is related to a non-protective vaginal microbiome in early pregnancy and an increased presence of any bacteria. In underweight women the ratio of protective microbiome dominance (65%) was higher than negative microbiome dominance (35%). In obese women the ratio of protective organisms (17%) was less than non-protective organisms (67%). Hydrogen peroxide (H202), a significant antimicrobial product of the vaginal microbiome is produced at different amounts dependent upon the *Lactobacillus* spp. present. L. *crispatus* produces 95%, L. *jensenii* 94%, and L. *iners* 9%. It is unknown why obese women have higher levels of non-protective organisms in the vaginal microbiome (Oh et al., 2015).

Race/Ethnicity/Genetics

Four studies evaluated differences in racial and ethnic groups in relation to the vaginal microbiome and preterm birth (Elovitz et al., 2019; Hyman et al., 2014; Stout et al., 2017; Wylie et al., 2014). Two studies observed genetic variations associated with vaginal microbiome (Hyman et al., 2014; Walther-Antonio et al., 2014).

Differences of ethnicity and geographical location are significant factors. Race and ethnicity show substantial variation. African American women experience a preterm birth rate of 18% compared with 12% of white women, 10% of Hispanic women, and 11% of Asian women (Hyman et al., 2014). Elovitz et al. (2019) evaluated the CSTs according to race or ethnicity. African American were predominantly CST I or CST IV A/IV B. Hispanic women were predominantly CST IV, and white women were predominantly CST I, II, III. Elovitz et al. (2019) found that the frequency of CSTs was significantly different between African American and non-African American women. At the primary visit, African American women at 50% and 15%. These differences remained at visit 2 and visit 3. The presence of CST III was higher for African American women at visit 3 but the presence of CST V was consistently decreased among African American women compared to non-African American women throughout the study (Elovitz et al., 2019).

Among all participants at all visits, several nonprotective microbiome organisms were found that were statistically significant with an association to an increased incidence of sPTB. The rate of sPTB was over 55% when the non-protective bacterial taxa were present (Elovitz et al., 2019). Stout et al. (2017) completed a study where 69% of the participants of the study were African American with a preterm birth rate of 31%. Those who delivered at term were found to have a vaginal microbiome that had stable community richness and Shannon diversity. Community richness is a microbiology term that means how many different species can be detected in the microbial ecosystem (Morris et al., 2014). Shannon diversity means is the species evenness (equal in abundance) or do some species dominate others? How evenly are the microbes distributed in a sample. (Morris et al, 2014). Those that delivered preterm were found to have significantly lower vaginal richness and diversity throughout pregnancy (p<.01). Beginning early during the first and second trimesters, instability of the vaginal microbiome was highly associated with sPTB. In the African American women who delivered at term, diversity, vaginal community richness, and evenness were stable (p=.11, p=.09, and p=.08). Evenness is a comparison of the similarity of the population size of each of the species present within the vaginal microbiome (Morris et al., 2014). In comparison among those who delivered preterm, richness, diversity, and evenness were significantly decreased (p<0.001, p=.003, and p<.001) (Stout et al., 2019).

African American women have two times increased risk for preterm birth compared to Caucasian women. The underlying components for this disparity are not well understood but cannot be explained merely by sociodemographic influences. Additionally, underlying components may include complicated interactions among maternal, paternal, and fetal genetics, epigenetics, and the microbiome. Within these sociodemographic influences may be probable basis for the differences found in racial groups. Mixed results have been found in studies of Asian and Hispanic women (Hyman et al., 2014). Caucasians are often noted to have higher amounts of protective microbiome organisms. Asian ethnicities tend to have increased amounts of nonprotective microbiome organisms. Hispanic and African American women are found to have vaginal microbiomes that have a diverse mixture of bacteria with little to no *Lactobacillus* spp. (Hyman et al., 2014).

Significant association was also found among the Hispanic women in connection with the vaginal microbiome and birth outcomes. Several non-protective microbiome organisms were present and associated with preterm birth (OR=4.45 [1.69, 11.97], p<.01) and (OR=0.19 [0.0076, 1.01], p=.068) (Wen et al., 2014). Comparing these two ethnicities, following management of maternal behavior and biological attributes, there continued to be differences that remained within the vaginal microbiome that markedly contributed to the incidence of preterm birth. Wylie et al. (2018) found similar results. Increased viral richness in African American women was correlated with sPTB (p=.0015 and p=.0019). Increased integration of bacterial diversity was also correlated with preterm delivery (p=.01) and a reduction in diversity was correlated with proceeding through the trimesters of pregnancy (p<.0001), to term delivery (Wylie et al., 2014).

Hyman et al. (2014) observed that among Asian women, 22% were lacking *Lactobacillus* spp. in the vaginal microbiome compared to other ethnicities at 0-8%. A significant difference in African American women during pregnancy was vaginal microbiomes that contained <50% of Lactobacillus compared to other ethnicities with vaginal microbiomes that contained at one species of Lactobacillus >50% with average of 63-91%. The percentage of the presence of at least one Lactobacillus in the vaginal microbiome in Caucasian women (93%), African American women (69%), Asian women (70%), and Hispanic women (74%).

Disparities continue even after considering commonly known preterm birth risk factors including smoking, education level, and socioeconomic status. African American women have a higher rate of reoccurrence of sPTB and preterm rupture of membranes (PROM). Sociodemographic influences account for some risk associated with sPTB, but do not account for many of the differences found within differing ethnic groups. Women who live in disadvantaged conditions are found to have higher risk of sPTB, both of which are higher among African
American women. Disparities associated with sPTB are found in different racial and ethnic groups even when they have the same access to healthcare (Elovitz et al., 2019).

Viruses

Viruses are small collections of genetic code which can be either DNA or RNA with a surrounding protein coat. Viruses are unable to reproduce; therefore, they infect cells and use components of these cells to make duplicates of themselves. In this process they kill the host cell and cause damage to the host organism. Bacteria in the vaginal microbiome have been studied more than viruses. Only one study evaluated viruses within the vaginal microbiota (Wylie et al., 2018). Wylie et al. (2018) refers to the Human Microbiome Project which studied vaginal DNA viruses and bacterial structures together. Viruses are common in the samples of healthy, asymptomatic women. DNA viruses were found in women with high-diversity bacterial groups. Wylie et al. (2018) suggests that this data shows the importance of the presence of viruses in the vaginal microbiome which has been thought to be unappreciated components.

Wylie et al. (2018) hypothesized that the presence of DNA viruses may be a significant portion of the microbiota correlated with preterm birth. Interactions linking bacteria and viruses is significant in assessment of the vaginal microbiome. The study examined a possible correlation between the vaginal virome and preterm birth. This was completed with the vaginal virome alone and with the bacterial microbiome. Bacteria and viruses may trigger a maternal inflammation cascade which can lead to PTL and PTB. These microbial features may be prospective biomarkers of a familiar underlying physiology in women at higher risk of PTL and PTB (Wylie et. al, 2018).

Viral pathogens are studied elements of the vaginal microbiome. No relationship was noted in bacterial groups with <70% *Lactobacillus* spp. and the existence of viruses during pregnancy. No specific bacterial groups were correlated with the existence of any specific virus. Wylie et al, (2018) found no specific viruses correlated with PTB but did find that in the presence of higher viral richness had an important correlation with PTB. The incidence of both high bacterial diversity and high viral diversity increased probability of PTB. This was particularly evident among AA women (Elovitz, 2019).

Examination of bacterial and viral communities is an important part of elucidating correlations of the vaginal microbiota and PTB (Wylie et. al, 2018). The specimen patterns of viral diversity in pregnancy are comparable to specimen patterns of bacterial diversity. Physiological changes in the vaginal microbiota in pregnancy can impact bacterial and viral groups. According to Wylie et al. (2018) there is greater viral diversity in the first trimester of pregnancy between term and preterm births, increased viral diversity is correlated with sPTB (Wylie et al., 2018).

Stress

Stress is indicative of how an individual may feel overwhelmed or unable to cope. One study assessed the correlation of stress and vaginal dysbiosis in the microbiota (Wylie et al., 2018). When the body is under mental and physical stress, increased pro-inflammatory cytokines and cortisol are produced. Acute inflammation contributes to increases of the incidence of sPTB. Chronic inflammation can also occur resulting in the same outcome (Burris et al., 2020).

Low-income African American women experience increased chronic social, financial, and racial stress which is linked to the significant racial disparity rate in the incidence of infection and PTB. Stress can influence the occurrence of depression and psychological response stressors which are also associated with negative pregnancy outcomes including PTB (Burris et al., 2020).

Stress stimuli are inevitable. The physiologic response of stress can be detrimental to the vaginal microbiome when stress stimuli are prolonged. Continuous stress stimulates the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes which

increase hormones that can cause a genitourinary infection. A cortisol-induced hindrance of vaginal glycogen accumulation leads to the incidence of vaginal infection (Burris et al., 2020).

Increases in estrogen and epithelial maturation are necessary for maintenance of a healthy vaginal microbiome (eubiosis). Cortisol can disturb this process and plays a role in pathogenesis of vaginal dysbiosis leading to infection and inflammation. This process is found to be significant in the presence of a healthy vaginal microbiome dominated by *Lactobacillus* spp. which should not be interrupted. Increased corticotropin-releasing hormone (CRH) is produced by the fetal membranes, decidua, and placenta (Burris et al., 2020).

Interventions

Interventions are actions completed to improve a situation, such as a medical disorder. They are actions that can be changed to improve or alter the microbiome. For this review interventions included antibiotics, nutrition/probiotic foods and supplements, progesterone. Five articles described potential interventions that may improve vaginal microbiome composition (Bellard et al., 2018; Brown et al, 2019); Elovitz et al., 2019; Honda et al., 2014; Myhre et al., 2011).

Antibiotics

Antibiotics are medications used to fight bacterial infections in the human body. Antibiotics work by killing bacteria or by stopping them from growing or multiplying. Two studies explored the effects of antibiotics on the vaginal microbiome (Brown et al., 2019; Wylie et al., 2018).

The primary cause of disease responsible for preterm birth is infection. Many cases of intrauterine infection that cause preterm birth occur from ascending infection. Attempts have been made to determine specific women with probability for preterm birth through assessment of the

vaginal microbial state. The use of antibiotics has been evaluated. Bellad et al. (2018) observed that in women with bacterial vaginosis if clindamycin was administered prior to 22 weeks gestation the rate of sPTB before 37 weeks gestation significantly decreased. Statistical significance was only found for oral clindamycin but not for vaginal clindamycin. The cure rate of bacterial vaginosis in pregnancy with clindamycin is 90%. The use of metronidazole was correlated with negative pregnancy outcomes and increased incidence of preterm birth. Clindamycin is only effective for few microbial species and is not effective against other numerous microbial species that cause preterm birth (Bellad et al., 2018).

Brown et al. (2019) observed that the use of erythromycin in treating vaginal dysbiosis caused exacerbation of the dysbiosis 47% (p=0.00009) especially in women who were primarily colonized with *Lactobacillus* spp. Following erythromycin treatment, dysbiosis of the vaginal microbiota stayed constant and bacterial richness and diversity remained unchanged. The use of erythromycin promotes depletion of *Lactobacillus* spp. and increases the bacterial diversity of the vaginal microbiota (Brown et al., 2019).

Nutrition, probiotic foods, and supplements

Nutrition is the intake of food and nutrients that are necessary for optimal health and growth. One study evaluated the relationship between nutrition, probiotic foods and supplements in relation to the vaginal microbiome (Myhre et al., 2011). The consumption of probiotic rich foods such as yogurt, kefir, sauerkraut, pickles, sourdough bread, traditional buttermilk, gouda/mozzarella/cheddar and cottage cheese in pregnancy is correlated with decreased incidence of preterm birth. Probiotics are noted to change the composition of the vaginal microbiota to allow for inhibition of pathogens as well as modulate inflammation that is commonly associated with preterm birth (Myhre et al., 2011).

Probiotic supplements, especially *Lactobacillus* spp., play a significantly beneficial role in maintaining healthy urinary and reproductive tracts. Emerging evidence is showing safety and efficacy in the use of probiotics in treatment and prevention of numerous infections or inflammatory conditions in pregnancy. They help to decrease the incidence of vaginal infections and help to increase colonization of *Lactobacillus* spp. within the vagina (Myhre et al., 2011).

The effect that *Lactobacillus* spp. have on the immune system and vaginal colonization is both species and strain dependent. L. *rhamnosus* GR1 and L. *reuteri* RC14 were found to have an excellent capability of colonization and are considered the preferred Lactobacilli for the use in the treatment of infections within the urogenital tract (Myhre et al., 2011). Myhre et al. (2011) completed a nationwide cohort study of 18,888 pregnancies in Norway. In the group that did not take probiotics, 950 incidences of sPTB occurred (70%) compared to the women who had taken probiotics (21%). The conclusion of this study was that the use of probiotics is associated with a decreased incidence of sPTB. Probiotics work to lower overall inflammation and help to provide a healthy microbial vaginal environment. Reduction of sPTB is thought to be able to be achieved through targeting dietary health concerns and evaluation of intake of probiotics (Myhre et al., 2011).

Consideration of interventions in regard to nutrition in early pregnancy are thought to be significant. Using probiotics that contain L. *rhamnosus* GR1 and L. *reuteri* RC14 has the potential to decrease vaginal infections as well as the incidence of sPTB by approximately 50% (Myhre et al., 2011).

Progesterone

Progesterone is a steroid hormone that the corpus luteum releases leading to stimulation of the uterus in preparation for pregnancy. One study evaluated the use of progesterone in altering the vaginal microbiome to prevent preterm birth (Kindinger et al., 2017). Currently used clinical methods to recognize and decrease the probability of sPTB include cervical length screening and treatment with 17-alpha hydroxyprogesterone caproate. Vaginal progesterone does provide some protection in women with a short cervix but is a strategy that will not have a significant impact on sPTB rates (Elovitz et al., 2019).

Kindinger et. al. (2017) investigated the role of progesterone within the vaginal microbiome in women with a short cervix. Progesterone supplementation had no effect on the structure of the vaginal microbiota during pregnancy. Richness and alpha diversity measurements were not altered. Progesterone also did not impact the amount of L. *iners* or L. *crispatus* throughout pregnancy (Kindinger et. al., 2017).

Critique of strengths and weaknesses

Strengths

The first strength of the review of the literature is that many of the studies are able to similarly identify new insights about the vaginal microbial profile in pregnancy and the association with the incidence of preterm labor and preterm birth. The majority of the studies identified consistent results which makes these findings reliable. Several other strengths of the review included studies with large cohorts and studies with intervention and control groups.

Implications were also provided in many of the studies for future stratifications of preterm labor and preterm birth risks and suggested targeted interventions. The majority of the studies were of high and good quality. While the number of participants in some of the studies were small, the nature of the studies allowed for saturation of the results and the identification of common themes. All studies were limited within the last eleven years with the majority of the studies occurring in the past five years, providing the most current available information. Besides identifying common themes of the correlation of the vaginal microbiome and its role in preterm labor and preterm birth, several studies provided key strategies and recommendations for practice to improve prenatal outcomes associated with vaginal microbiome. The microbiome is almost invisible, and frequently overlooked. The fact that it can contribute to pregnancy outcomes is a relatively new idea that deserves attention.

Weaknesses

The qualitative nature of some of the studies is a weakness of this research article review. In these studies it is more difficult to analyze and measure causal relationships within variables related to quantity, intensity, amount, and frequency. Another weakness is the small sample sizes in some of the studies as well as correlations not being fully interpreted or needing further trials for validation. Many studies did not discuss how screening for all the microbiomes could be incorporated into regular prenatal care. These weaknesses cause difficulty in generalizing the results to larger populations. PTL/PTB is a very complex, multifactorial problem. By focusing only on the microbiome, many other factors that contribute to PTL/PTB can be missed.

Summary

A thorough search of the literature was completed, and 23 articles were selected for review. This chapter outlined the synthesis of major findings. Several microbiome environments were found to be associated with PTL/PTB. These primarily were correlated with microbiomes influenced by L. *iners* and L. *jensenii* as well as other pathogens and *Lactobacillus* spp. depleted environments (Brown et al., 2018; Freitas et al., 2018; Jayaprakash et al., 2016; Petricevic et al., 2014; Santos de Freitas, 2019; Tabatabaei et al., 2018; Verstraelen et al., 2009). Microbiome environments that were found to be protective against PTL/PTB and were found to be predominantly influenced by L. *crispatus* and L. *gasseri* (Kindinger et al., 2017; Romero, Nikita et al., 2014; Stafford et al., 2017; Stout et al., 2017; Walther-Antonio et al., 2014).

Evidence is growing that the vaginal microbiome may have a significant role in maintaining pregnancy. Differences were noted among various racial and ethnic groups with higher incidence of negative microbial composition and PTB in the African American and Hispanic population (Elovitz et al., 2019; Wen et al., 2013; Wylie et al., 2018). Risk factors in all ethnic groups included high BMI, poor diet, negative health behaviors, and stress. Potential interventions were discussed among these as well as the potential for the use of oral probiotics to decrease the incidence of PTL/PTB (Myhre et. al, 2011).

Presence of multiple *Lactobacilli spp*. is a significant determinant of stability of the vaginal microbiome during pregnancy. These are important observations in light of current disease burden linked with depleted Lactobacilli. Approximately 50% of women have vaginal microflora containing L. *gasseri*/L. *iners* which are the least effective colonizers and defenders. There appears to be a significant number of women with lactobacilli-driven defenses that are less optimal than presumed (Verstraelen et al, 2009).

Chapter four will address nurse-midwifery practice implications, examination of recommendations and directions for future research studies, as well as integration of The Life Perspective Rhythm Model developed by theorist Dr. Joyce Fitzpatrick in relation to microbial composition and its association with PTL/PTB.

Chapter IV: Discussion, Implications and Conclusions

The purpose of this literature review was to examine the CSTs that are associated with the incidence of PTL and PTB and to identify any interventions or treatments that could successfully alter the vaginal microbiome and decrease the incidence of PTL and PTB. A hostile vaginal microbiome is identified as an aspect that can be modifiable in correlation with PPROM. Application of the Johns Hopkins Research of Evidence Level and Guide (Dearholt & Dang, 2012) assisted in the selection and appraisal of 23 scholarly peer-reviewed articles shown in the Matrix. These articles were evaluated on their research methodology, results, strengths, limitations. Implications for nurse-midwifery practice and recommendations for future research will be addressed.

Literature Synthesis & Implications for Midwifery Practice

The research questions for this review of the literature explore: "How do the vaginal microbiome community states relate to preterm labor or birth?" and "If the microbiome is implicated, are there interventions that can alter the microbiome to reduce preterm birth?" Through the critical appraisal of the literature, a significant amount of information related to abnormal vaginal microbial CSTs and increased incidence of PTL and PTB was identified. The variety of methods that are most successful in the determination of abnormal CSTs and interventions to prevent PTL and PTB reveal that there is not just one single method that has been found the most effective and consistently used. Utilizing the information from the 23 research articles made it possible to determine the bacterial taxa associated with PTL and PTB.

To determine which women are at an increased risk of PTL and PTB, assessment of vaginal bacterial CSTs is essential. In women who deliver at term, the vaginal bacterial community states show stability of richness and diversity throughout pregnancy. In women who

deliver prematurely, the vaginal bacterial CSTs have significantly decreased community richness and diversity that can already be identified in early pregnancy. The change in richness and diversity associated with PTB occurs near the end of the first or the beginning of the second trimester with a greater diversity found in the first trimester. When diversity was diminished at five weeks it was predictive of PTL that progressed to PTB later in pregnancy (Stout et. al, 2017).

Consideration must be given to differing region-specific factors as well as the differing racial/ethnic groups. Hormonal, nutritional, and immunological changes during pregnancy may alter the vaginal microbiota. They may also help to maintain maternal and fetal health and well-being during pregnancy. Understanding these factors and the role they may have in the incidence of PTL and PTB is significant for the nurse-midwife (Elovitz et al., 2019).

Knowledge of the vaginal microbiome that is associated with PTL and PTB is necessary to determine strategies that will prevent this reproductive outcome (Jayaprakash et. al, 2016). Fixed point of references of vaginal microbiome patterns of stability in pregnancy were determined. This provides a basis for evaluation of the connections between the vaginal microbiome and adverse pregnancy outcomes. Awareness of the vaginal microbiome during pregnancy can provide valuable prognostic, diagnostic, and therapeutic information (Romero, Biede et. al, 2014). These observations are pertinent to developing a comprehensive view of the changes within the vaginal ecosystem that occur during healthy pregnancy. These changes can be meaningful in assessment of health and for identifying a predisposition to any adverse outcomes (Romero, Biede et. al, 2014).

Important links have been found between microbial CSTs and metabolite profiles associated with PTL and PTB. This has clinical significance that helps improve comprehension of the processes of inflammation correlated with PTL and PTB (Stafford et. al, 2017). Studies also identify the significance of taking into consideration race/ethnicity when assessing vaginal bacteria and risk for PTL and PTB. (Wen et. al, 2013). In pregnancy and non-pregnancy, African American women have a higher proportion of Lactobacillus depleted vaginal microbiomes. Their commonly noted higher incidence of PTL and PTB can be associated with Lactobacillus depletion. When Lactobacillus sp. is present it is commonly L. iners which is a marker for PTB (Elovitz et. al, 2019).

Wylie et al. (2018) hypothesized that the presence of DNA viruses may be a significant constituent related to the vaginal microbiome and probability of preterm birth. Interactions linking bacteria and viruses is significant in assessment of the vaginal microbiome. Bacterial and viral groups may trigger a maternal inflammation cascade which can lead to PTL and PTB. Microbial features can be potential biomarkers of a familiar underlying physiology that is correlated with probability of PTL and PTB (Wylie et. al, 2018). Viral pathogens are familiar elements of the vaginal microbiome. Wylie et al, (2018) found no specific virus responsible for PTB but did find that higher viral richness had a significant association with PTB. Increased bacterial diversity combined with increased viral diversity have the highest probability of PTB. Examination of bacterial and viral groups is a significant aspect of interpreting correlations of the vaginal microbiome and PTB (Wylie et. al, 2018).

Due to the increasing evidence that discusses how the human microbiome influences health, it is significant for the nurse-midwife to have a basic comprehension of the microbiome and how to apply it when providing patient care. There are vast differences among individuals in the mixed types of bacteria that make up various microbiome communities. There is much more to learn. Research needs to occur in relationship to the vaginal microbiome. Future evidence may help to provide insight into how to develop more effective interventions for treating vaginal dysbiosis and for promoting positive maternal/fetal outcomes.

The literature review identified various bacteria associated with PTB, but no trials attempted to alter the vaginal microbiome. Safety and efficacy are found for the use of probiotic rich foods in pregnancy for treatment and prevention of numerous infections or inflammatory conditions (Myhre et al., 2011). Probiotics that contain L. *rhamnosus* GR1 and L. *reuteri* RD14 have the potential to decrease vaginal infections and the incidence of PTB by approximately 50% (Myhre et al., 2011). Factors found to impact the vaginal microbiome negatively are smoking, substance abuse and hygiene practices, such as douching (Brown et al., 2018b). Physiological effects of stress lead to the incidence of genitourinary infection, vaginal dysbiosis, and the loss of Lactobacillus dominance.

Prevention strategies are aimed at alleviating stress through lifestyle and nutrition modifications (Burris et al., 2020). The use of metronidazole was correlated with negative pregnancy outcomes and increased incidence of preterm birth. Clindamycin is only effective for few microbial species and is not effective against other numerous microbial species that cause preterm birth (Bellard et al., 2018). The use of erythromycin promotes depletion of *Lactobacillus* spp. and increases the bacterial diversity of the vaginal microbiota (Brown et al., 2019). The use of progesterone also did not impact the amount of L. *iners* or L. *crispatus* throughout pregnancy and does not decrease the PTB incidence related to vaginal dysbiosis (Kindinger et. al., 2017).

As a nurse-midwife it is important to contribute to this research and to incorporate the most up to date evidence-based recommendations into patient care. Several modifiable factors contribute to vaginal dysbiosis, including hygienic practices and sexual behavior that can alter the composition of the microbiome in the vagina. The nurse-midwife has the responsibility to

47

provide education aimed at decreasing potentially harmful behaviors that exist in high-risk populations. Douching occurs in some cultures. This practice is associated with vaginal dysbiosis (McElroy et al., 2017). The stability of the vaginal microbiota in pregnancy is significant due to its association with the increased incidence of PTL and PTB (McElroy et. al, 2017).

The body of evidence continues to grow, showing that the microbiome profoundly influences human health. Nurse-midwives need to be aware of any practices such as antibiotic administration or frequency of vaginal examinations when providing antenatal care or in preterm labor that may alter the composition of the vaginal microbiota. To provide comprehensive and evidence-based care it is prudent for the nurse-midwife to follow practices that incorporate what is known about the vaginal microbiome (Cahill et al., 2012).

Recommendations for Future Research

Much of the current research reached similar conclusions. The research that does exist from the past ten years has consistent results and is of good quality. *L. iners* is distinctly correlated with vaginal dysbiosis. Further research studies are needed to recognize this microbiome and quantify the relative number of L. *iners* in the presence of differing conditions during pregnancy. This will further the understanding of the potential harmful outcomes associated with this microbiome (Zheng et. al, 2019). Overall specific causal relationships have not been able to be determined. Recommendations for further study utilizing sequencing methodology are needed. Additionally, assessment of microbial metabolite production and host response might additionally explain the elements associated with the incidence of sPTB. Answers to that question could improve the ability to recognize women at risk earlier in pregnancy (Freitas et al., 2018). Further research is needed to determine practical methods to build assessing CST's into routine patient care. Some of this research has been completed as a part of studies in major healthcare centers but has limitation as information has not been provided for general use.

Across all studies, L. *iners* was correlated with preterm birth and L. *crispatus* is correlated with term birth. Mechanisms of how the increased presence of L. *iners* contributes to the incidence of PTB are not completely understood. Further studies that investigate the presence of differing Lactobacilli within the vaginal microflora to provide a longitudinal picture of the vaginal microbiota throughout pregnancy are indicated (Petricevic et. al, 2014). Another important aspect to study is the immunology of the host (Tabatabaei et. al, 2018).

Further evidence is needed to provide insight into how to develop effective strategies and interventions that improve the vaginal microbiome for promotion of positive maternal/fetal outcomes. Further research is also indicated in studies of all racial/ethnic groups and bacterial communities as it is important to understand the differing diverse populations. The etiology of infections associated with PTB, can be a focus as many of these studies have shown powerful structural dissimilarities among differing racial/ethnic groups. Racial/ethnic groups would benefit from research identifying bacterial communities among diverse populations. Also to be taken into account is the potential analytical value of community ecology methods to improve understanding of the associations related to differing racial/ethnic groups (Wen et al., 2013).

Vaginal viral diversity has a strong association with PTB. The changes within the vaginal virome follow similar patterns that allude to an underlying physiology of pregnancy itself that can affect bacterial/viral communities. The first trimester presence of vaginal dysbiosis has shown to have the most significant association with PTB suggesting it is of critical importance to have better understanding of bacterial/viral communities during this time period (Wylie et al., 2018).

Current standards of care for decreasing the incidence of PTL and PTB are not decreasing the public health burden of sPTB. These studies as well as further studies will help to develop prevention strategies. Further research will help to develop innovative therapeutic opportunities for prevention of sPTB that may include microbiome-based therapeutics and immune modulators (Elovitz et al., 2019).

With rapidly evolving technologies, cervicovaginal fluid sampling can be an easy, quick, and cost-effective point of care testing that can assess the *Lactobacillus* spp. abundance as well as the presence of any pathobionts. All women could be tested in the first trimester and when preterm labor symptoms occur. Factors such as genetics, antepartum hemorrhage and anatomical abnormalities are unmodifiable risk factors compared to an unfavorable vaginal microbiome that can be a modifiable factor for the incidence of PPROM. The ability to identify this subset of patients and initiate interventions such as manipulation of the bacterial communities through prebiotic or probiotics requires further investigation as these may be promising strategies for decreasing or preventing the incidence of PPROM and PTB (Brown et al., 2018).

Many associations found to this point between microbiomes and PTB have been qualitative. Future goals are to identify unique bacterial communities that can be targeted in working toward prevention of PTB. Important considerations need to be made of the ecological dynamics of differing bacterial species and the interactions these play in the host environment. Current therapies used in treating infection or inflammation associated with PTB focus on the causal microbiomes. This requires timely and accurate diagnostic measures or the targeting of cytokines and inflammation pathways that cause preterm labor (Brown et al., 2019).

Due to emerging findings of the contribution of the vaginal microbiota to PTL and PTB, it is necessary to determine therapeutics that will alter this microbiota in differing niches. Long term, further understanding of the vaginal microbiome and the role it plays in PTL and PTB can help to define what is a healthy microbiome during pregnancy. That knowledge can lead to development of strategies to restore normal microbiota during pregnancy (Walther-Antonio et al., 2014).

Application and Integration of Theoretical Framework

When considering the use of The Life Perspective Rhythm Model in association with vaginal microbiomes, PTL, and PTB, the model provides a unique way to analyze what is necessary to ensure successful outcomes in pregnancy for each woman by understanding negative outcomes, benefits, barriers, and cues to action. Understanding negative outcomes allows the woman and the midwife to look at her current situation and surrounding environment. Understanding benefits allows the woman to value how the assessment and recommendations of the nurse-midwife can help her to have more optimal pregnancy outcomes. The nurse midwife should recognize the barriers that a woman faces that the nurse midwife, and the patient can discuss and find ways to overcome them. Understanding the barriers allows the woman and midwife to assess lifestyle and dietary behaviors, and to identify any modifiable factors that may be present that can decrease the incidence of PTL or PTB. Finally, understanding cues to action are seen clearly by the woman through the external stimulus of the midwife providing counseling.

The core ideas of the Life Perspective Rhythm Model include the significance of person, health, wellness, and the metaparadigm of nursing. It is important to understand the woman as a whole person including her environment, that is, the culture and the social structures that exist within her environment. In focusing on health, assessment is made of all those around the patient. The concept is that the woman needs the provider to ensure optimal health. The patient is also willing to make needed changes and follow recommendations to ensure improved health and optimal outcomes. Wellness is the optimal state of health the nurse-midwife hopes to provide through education and health promotion. This would include any lifestyle factors or behaviors that the woman may have that may be modifiable to improve the composition of her vaginal microbiome to ensure the positive pregnancy outcome of decreased potential for PTL or PTB. The patient must be willing to provide information and follow the nurse midwife's recommendations. The nurse-midwife plays a significant role in providing education that will help to decrease the incidence of negative maternal or neonatal outcomes related to vaginal dysbiosis during pregnancy.

The application of the nursing metaparadigm allows the nurse-midwife to fully understand the patient and their life, environment, and social constructs. The nurse-midwife thoroughly assesses current health status and environment to identify the needs of the woman. The nurse-midwife will then incorporate theory, practice, and procedures that are individualized to each woman and each situation to ensure the most optimal outcomes for each person in her care. In doing this, the goal is to decrease the incidence of PTL or PTB for each woman and ensure a positive and optimal pregnancy outcome.

Conclusion

The purpose of this review was to investigate vaginal microbiome CSTs that are found to be associated with the incidence of PTL and PTB and any modifiable risk factors. Using the Johns Hopkins Research Evidence Level and Guide (Dearholt & Dang, 2012), 20 scholarly peerreviewed articles were thoroughly appraised and examined. The articles were examined for their implications into nurse-midwifery practice. The information presented shows the significant need and opportunity for further research on this topic in order to be relevant to the women of this generation and working toward decreasing the current health burden of PTL and PTB. Integration and application of The Life Perspective Rhythm Model showed the critical elements needed to guide the discussion pertaining to the vaginal microbiome and association with PTL and PTB. This review will inform CNMs and other healthcare professionals on the need to further educate themselves in regard to vaginal microbiome and encourage them to participate in research to develop strategies to decrease the current high percentage of PTL and PTB that occur.

References

- Akobeng, A. (2005). Understanding randomized controlled trials. *BMJ Journals*, 90(8), 837-840. http://dx.doi.org/10.1136/adc.2004.058222
- American College of Nurse-Midwives (n.d.). *Essential facts about midwives*. Retrieved January 10, 2020 from https://www.midwife.org/searchresults?addsearch=about+nurse+midwives
- American College of Nurse-Midwives (n.d.). Evidence-based practice: Pearls of midwifery. Retrieved January 10, 2020 from <u>https://www.midwife.org/Evidence-Based-Practice-</u> Pearls-of-Midwifery
- American College of Nurse-Midwives (n.d.). *Hallmarks and midwifery*. Retrieved on January 10, 2020 from <u>https://www.midwife.org/Our-Philosophy-of-care</u>
- Bellad, M., Hoffman, M., Mallapur, A., Charantimath, U., Katageri, G., Ganachdri, M., Kavi, A., Ramdurg, U., Bannale, S., Revankar, A., Sloan, N., Kodkany, B., Goudar, S., & Derman, R. (2018). Clindamycin to reduce preterm birth in a low resource setting: A randomized placebo-controlled clinical trial. *An International Journal of Obstetrics and Gynaecology, 125*(12), 1601-1609. https://doi.org/10.1111/1471-0528.15290
- Brown, R., Al-Memar, M., Marchesi, J., Lee, Y., Smith, A., Chan, D., Lewis, H., Kindinger, L., Terzidou, V., Bourne, T., Bennett, P., & Macintyre, D. (2019). Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of fetal membranes. *Translational Research*, 207.

https://doi.org/10.1016/j.trsl.2018.12.005

- Brown, R., Marchesi, J., Lee, Y., Smith, A., Lehne, B., & MacIntyre, D. (2018). Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. *BMC Medicine*, *16*(9), 1-15. doi:10.1186/s12916-017-0999-x
- Burris, H., Riis, V., Schmidt, I, Gerson, K., Brown, A., & Elovitz, M. (2019). Maternal stress, low cervicovaginal B-defensin, and spontaneous preterm birth. *American Journal of Obstetrics & Gynecology*, 2(2). https://doi.org/10.1016/j.ajogmf.2020.100092
- Centers for Disease Control and Prevention (2020). *Preterm birth*. Retrieved on January 10, 2020 from

https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm#:~: text=In%202019%2C%20preterm520birth520affected,to%20teens%20and%20young% 20mothers.

- Dearholt, S., & Dang, D. (2012). *Johns Hopkins nursing evidence-based practice: Models and guidelines* (Second edition.). Indianapolis, IN: Sigma Theta Tau International.
- Elovitz, M., Gajer, P., Riis, V., Brown, A., Humphrys, M., & Ravel, J. (2019).
 Cervicovaginal microbiota and local immune response modulate the risk of spontaneous preterm delivery. *Nature Communications, 10*(1035), 1-8. https://doi.org/10.1038/s41467
 -019-09285-9
- Freitas, A., Bocking, A., Hill, J., & Money, D. (2018). Increased richness and diversity of the Vaginal microbiota and spontaneous preterm birth. *BMC*, 6(117), 1-15. https://doi.org/10.1186/s40168-018-0502-8

- Garcia-Basteiro, A., Quinto, L., Macete, E., Bardaji, A., Gonzalez, R., Nhacolo, A., Sigauque,
 B., Sacoor, C., Ruperez, M., Sicuri, E., Bassat, Q., Sevene, E., & Menendez, C. (2017).
 Infant mortality and morbidity associated with preterm and small-for-gestational-age
 births in Southern Mozambique: A retrospective cohort study. *PloS one, 12*(2),
 e0172533. https://doi.org/10.1371/journal.pone.0172533
- Honda, H., Yokoyama, T., Akimoto, Y., Tanimoto, H., Teramoto, M., & Teramoto, H. (2014).
 The frequent shift to intermediate flora in preterm delivery cases after abnormal vaginal flora screening. *Scientific Reports, 4*(4799). doi:10.1038/srep04799
- Hyman, R., Fukushima, M., Jiang, H., Fung, E., Rand, L., Johnson, B., Vo, K., Caughey, A.,
 Hilton, J., Davis, R., & Guidice, L. (2014). Diversity of the vaginal microbiome
 correlates with preterm birth. *Reproductive Sciences*, 21(1), 32-40. doi:
 10.1177/19337/9113488838
- Jayaprakash, T., Wagner, E., Schalkwyk, J., Albert, A., Hill, J., & Money, D. (2016). High diversity and variability in the vaginal microbiome in women following preterm premature rupture of membranes (PPROM): A prospective cohort study. *PlosOne*, 11(1), e0166794. doi:10.1371/journal.pone.0166794
- Kindinger, L., Bennett, P., Lee, Y., Marchesi, J., Smith, A., Cacciatore, S., Holmes, E.,
 Nicholson, J., Teoh, T., & Macintyre, D. (2017). The interaction between vaginal microbiota, cervical length and vaginal progesterone treatment for preterm birth risk. *Microbiome, 5*(6), 1-14. doi:10.1186/s40168-016-0223-9
- Myhre, R., Brantsaeter, A., Myking, S., Gjessing, K., Sengpiel, V., Meltzer, H., Haugen, M., & Jacobsson, B. (2011). Intake of probiotic food and risk of spontaneous preterm delivery.
 American Journal of Clinical Nutrition, 93(1), 151-157. doi: 10.3945/ajcn.110.004085.

- Nursing Theory (2020). *Life Perspective Rhythm Model*. Retrieved January 2, 2020 from https://nursing-theory.org/theories-and-models/life-perspective-rhythm-model.php
- Nursing Theory (2020). *Rogers' theory of unitary human beings*. Retrieved January 30, 2020 from <u>https://nursing-theory.org/theories-and-models/roger-theory-of-unitary-human-</u> beings.php
- Oh, H., Seo, S., Kong, J., Lee, J., & Kim, M. (2015). Association between obesity and cervical microflora dominated by Lactobacillus iners in Korean women. *Journal of Clinical Microbiology*, 53, doi:10.1128/JCM.01387-15.
- Petricevic, L., Domig, K., Nierscher, F., Sandhofer, M. Fidesser, M., & Kiss, H. (2014). Characterization of the vaginal Lactobacillus microbiota associated with preterm delivery. *Scientific Reports*, 4, 5136. doi:10.1038/srep05136
- Romero, R., Hassan, S., Gajer, P., Tarca, A., Fadrosh, D., ... Ravel, J. (2014(a)). The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. *Microbiome, 2*(4), 1-19. http://www.microbiomejournal.com/content/2/1/10
- Romero, R., Hassan, S., Gajer, P., Tarca, A., Fadrosh, D., & Ravel, J. (2014(b)). The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at birth. *BioMed Central*, 2(18), 1-15. http://www.microbiomejournal.com/content/2/1/18
- Stafford, G., Parker, J., Amabebe, E., Kistler, J., Reynolds, S., & Anumba, D. (2017).
 Spontaneous preterm birth is associated with differential expression of vaginal metabolites by Lactobacilli-dominated microflora. *Frontiers in Physiology*, 8(615), 1-15. doi:103389/fphys.2017.00615

- Stout, M., Zhou, Y., Wylie, K., Tarr, P., Macones, G., & Tuuli, M. (2017). Early pregnancy vaginal microbiome trends and preterm birth. *American Journal of Obstetrics & Gynecology*, 356, e1-e18. http://dx.doi.org/10.1016/j.ajog.2017.05.030
- Tabatabaei, N., Eren, A., Barreiro, L., Yotova, V., Dumaine, A., & Fraser, W. (2018). Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a casecontrol study. *An International Journal of Obstetrics and Gynaecology*, *126*(3), 1-11. <u>https://doi.org/10.1111/1471-0528.15300</u>
- VandeWijgert J. (2017). The vaginal microbiome and sexually transmitted infections are interlinked: Consequences for treatment and prevention. *PLoS Medicine*, 14(12), e1002478. https://doi.org/10.1371/journal.pmed.1002478
- Verstraelen, H., Verhelst, R., Claeys, G., DeBacker, E., Temmerman, M., & Vaneechouette, M. (2009). Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. *BMC Microbiology*, 9(116), 1-10. doi:10.1186/1471-2180-9-116
- Walther-Antonio, M., Jeraldo, P., Miller, M., Yeoman, C., Nelson, K., & Creedon, D. (2014).Pregnancy's stronghold on the vaginal microbiome. *PLOS ONE*, 9(6), 1-10.
- Wen, A., Srinivasan, U., Goldberg, D., Owen, J., Marrs, C., & Foxman, B. (2013). Selected vaginal bacteria and risk of preterm birth: An ecological perspective. *The Journal of Infectious Diseases, 209*, 1087-1094. doi://10.1093/infdis/jit632
- Wylie, K., Wylie, T., Cahill, A., Macones, G., Tuuli, M., & Stout, M. (2018). The vaginal eukaryotic DNA virome and preterm birth. *American Journal of Obstetrics & Gynecology, 219*(189), e1-12. <u>https://doi.org/10.1016/j.ajog.2018.04.048</u>

Zheng, N., Guo, R., Yao, Y., Jin, M., Cheng, Y., & Ling, Z. (2019). Lactobacillus iners is associated with vaginal dysbiosis in healthy pregnant women: A preliminary study. *BioMed Research International*, 2019, 1-9. <u>https://doi.org/10.1155/2019/6079734</u>

Appendix A. Microbiology terms and definitions

Anaerobic Microbes

Lactobacillus crispatus (L. crispatus), Lactobacillus gasseri (L. gasseri), Lactobacillus iners (L. iners), Lactobacillus jensenii (L. jensenii), Lactobacillus acidophilus (L. acidophilus), Leptotrichia buccalis (L. buccalis), Sneathia sanquinegens (S. sanquinegens), Eggerthella lenta (E. lenta), Megasphaera species (Megasphaera spp.), Veillonellaceae bacterium (V. bacterium), Molliculite species (Molliculite spp.), Mageebacillus indolicus (M. indolicus), Actinomyces neuii (A. neuii), Peptoniphilus harei (P. harei), Dialister pneumosintes (D.pneumosintes), Varibaculum cambriense (V. cambriense) and bacterial vaginosis-associated bacterium 1(BVAB1).

Grow in anaerobic and aerobic conditions

Mycoplasma pneumoniae (M. pneumoniae), Ureaplasma urealyticum (U. urealyticum), Gardnerella vaginalis (G. vaginalis), Provetella bivia (P. bivia), Atopobium vaginae (A. vaginae), Mobiluncus curtsii/mulieris (M. curtsii/mulieris), Aerococcus christensenii (A. christensenii), Bacteroides ureolyticus (B. ureolytics).

Definitions

Aerobic-Bacteria that require free oxygen.

Anaerobic- Bacteria that require the absence of free oxygen.

Alpha diversity- Variation of microbes in a single sample (Chu et al., 2018).

Beta diversity- Variation of microbial communities between samples. What are the differences in microbial composition from one environment to another (Chu et al., 2018).

Community state types (CSTs)- The most common isolated species found in a healthy vaginal microbiome are *L. crispatus, L. gasseri, L. jensenii*, and *L. iners*. Community state types is a system to grade the vaginal microbiota patterns in relationship to which dominant *Lactobacillus spp.* is present. This system was developed through the use of gram staining, sequencing of 16S rRNA genes and cultures. In CSTIa *L. crispatus* is the dominant species followed by *L. jensenii*. In CSTIb the dominant species are *L. iners* and *L. gasseri*. CSTII is considered an intermediate state between CSTI and CSTIII. Within CSTII are the presence of *L. iners, L. gasseri, L. crispatus, A. vaginae, G. vaginalis, A. neuii* and *P. harei*. CSTIII are the bacterial vaginosis associated species including *G. vaginalis, A. christensenii, A. vaginae, B. ureloyticus, D. pneumosintes, M. curtisii, P. bivia* and *V. cambriense* as well as *Lactobacillus spp.*, primarily *L.*

iners. CSTIV is a group of strictly anaerobic bacteria, including *P. bivia, D. pneumosintes, A. vaginae, G. vaginosis, Megasphaera, P. harei*, bacterial vaginosis associated bacteria I, II, III (BVABI, BVABII, BVABIII), as well as *L. crispatus* and *L. iners* (VandeWijgert, 2017). CSTI- *Lactobacillus crispatus*/CSTII- *Lactobacillus gasseri*/CSTIII- *Lactobacillus iners*/CSTIV-mixed anaerobes/CSTV- *Lactobacillus jensenii*.

Diversity- Is their species evenness (equal abundance) or do some species dominate others? Diversity states how evenly the microbes are distributed in a sample. (Morris et al, 2014).

Evenness- A comparison of the similarity of the population size of each of the species present within the vaginal microbiome (Morris et al., 2014).

Vaginal cleanliness- Vaginal cleanliness is used to determine inflammation status as it can lead to further inflammation. Degree II-III indicate normal microecological vaginal status. Degree III-IV indicate a status of abnormality. (Ting et al., 2019).

Free oxygen- Is oxygen that is not combined with other elements such as carbon or nitrogen.

P value- P-values tell us whether an observation is a result of a change that was made or is a result of random occurrences. It is a test for significance. In order to accept a test result the p-value should be low. Value below 0.05 is significant. Value greater than 0.05 is not significant (Nahm, 2017).

Shannon diversity index- Combines richness and diversity. It measures both the number of species and the inequality between species abundances (Morris et al., 2014). Shannon evenness index- Independent of species richness, measures how evenly the microbes are distributed in a sample without considering the number of species (Morris et al., 2014).

Vaginal dysbiosis- Shift from the most favorable vaginal microflora by bacterial diversity which is associated with adverse health outcomes. (VandeWijgert, 2017). Richness- How many different species can be detected in the microbial ecosystem (Morris et al., 2014).

The terms microbiome and microbiota may be used interchangeably.

Appendix B. Literature Review Matrix

Source: Bellad, M., Hoffman, M., Mallapur, A., Charantimath, U., Katageri, G., Ganachdri, M., Kavi, A., Ramdurg, U., Bannale, S., Revankar, A., Sloan, N., Kodkany, B., Goudar, S., & Derman, R. (2018). Clindamycin to reduce preterm birth in a low resource setting: A randomized placebocontrolled clinical trial. *An International Journal of Obstetrics and Gynaecology*, *125*(12), 1601-1609.

<u>nttps://doi.org/10.1111/14</u>	4/1-0528.15290				
Purpose/	Design	Results:	Strengths/		
Sample:	(Method/		Limitations:		
	Instruments):				
Purpose: To determine	Women were	Results: Of the 6476	Strengths:		
whether oral	required to have a	screened women, 1727	Randomized control		
clindamycin reduces	singleton fetus	women were randomized	trial. Large cohort size.		
the risk of preterm birth	between 13+0/7	(block randomized in groups	Use of placebo group.		
(PTB) in women with	weeks and	of six; clindamycin n = 866,			
abnormal vaginal	20+6/7 weeks	placebo n = 861). The	Limitations: Specific		
microflora as evidenced	and an elevated	demographic, reproductive,	setting. Specific		
by a vaginal pH \geq 5.0.	vaginal pH (≥5.0)	and anthropomorphometric	population.		
	by colorimetric	characteristics of the study			
Sample/Setting:	assessment.	groups were similar.			
Randomized double-	Participants were	Compliance was high, with			
blind placebo-	randomized to	over 94% of capsules being			
controlled trial.	either oral	taken. The rate of PTB before			
Rural southern India.	clindamycin 300	37 weeks was comparable			
Pregnant women with a	mg twice daily	between the two groups			
singleton fetus between	for 5 days or an	[clindamycin 115/826			
13+0/7 weeks and	identical-	(13.9%) versus placebo			
20+6/7 weeks.	appearing	111/806 (13.8%), between-			
Pregnant women were	placebo.	group difference 0.2% (95%			
recruited during		CI -3.2 to 3.5% , P = 0.93)],			
prenatal visits in		as was PTB at less than 34			
Karnataka, India, from		weeks [clindamycin 40/826			
October 2013 to July		(4.8%) versus placebo group			
2015.		37/806 (4.6%), between-			
		group difference 0.3% (95%			
Level of Evidence: 1		CI - 1.8 to 2.3%, $P = 0.81$)].			
		No differences were detected			
Quality of Evidence:		in the incidence of			
В		birthweight of <2500 g, <1500			
		g, miscarriage, stillbirth or			
		neonatal death.			
		Conclusion. In this setting			
		conclusion: In this setting,			
		degrage DTD gmong Women			
		with vocinal nH >5.0			
Authon Decommondation					
Author Accommendations. Oral children between $15\pm0/7$ and $20\pm0/7$ weeks does not prevent preterm birth in women with a vaginal pH >5.0					
preterm offin in women with a vaginal $p_H \ge 5.0$.					
сонникату тог сигтень с	писат игасисе онеу	non. Futuel studies are needed.			

be researched to find effective strategies for prevention of preterm birth.

Source: Brown, R., Al-Memar, M., Marchesi, J., Lee, Y., Smith, A., Chan, D., Lewis, H., Kindinger, L., Terzidou, V., Bourne, T., Bennett, P., & MacIntyre, D. (2019). Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. *Translational Research*, 207, 30-43. https://doi.org/10.1016/j.trsl.2018.12.005

Purpose/	Design	Results:	Strengths/
Sample:	(Method		Limitations:
•	Instruments):		
Purpose: A high	Prospective	A vaginal microbiome with	Strengths:
ann donlata vaginal	Comvises vaginal	abundance (<75%) is associated	rindings of this study
spp. depiete vagiliai	fluid comple from	with increased relative risk:	for future
factor for DDDOM It is	the veginal	with increased relative fisk, 2.56(1.66, 2.88) and 2.24	stratification of DTD
unknown when in	formix Domost	(1.50, 2.42) at 24, 20+6 and 20	suallication of FID
unknown when in	formix. Repeat	(1.39-3.42) at 24-29+6 and 30- 35+6 weaks. A veginal	risk and targeted,
astablished	taken where	microbiome dominated by	interventions the
established.	nossible within	Incrobionie dominated by Lastabasillus $spp > 24$ weaks	success of which are
Sample/Satting.	the gestational	Lactobacinus spp. > 24 weeks	bighly relient upon
Preterm surveillance	time window of	PPROM risk 0.39 (0.26, 0.60)	
clinics at Oueen	12 17 18 23 24	PR 0 43 (0.20 - 0.63) at 24	identification of the
Charlotte's St Mary's	12-17, 10-23, 24-	$20+6$ and 30 , $35+6$ weeks Λ	underlying etiology
and Chelsen and	of gestation	vaginal microbiome dominated	underrying chology.
Westminster hospitals	of gestation.	by any species other than	I imitations.
London (n=535) Farly		L actobacillus is associated with	Examination of
pregnancy unit Queen		subsequent preterm premature	vaginal microbiota
Charlotte's Hospital		rupture of membranes	composition across
London $(n=1003)$		(PPROM) at all gestational time	natient groups
London (nº 1005).		windows (RR 1 63 $(1.27-2.80)$	preceding PPROM
Level of evidence• II		1.28(1.10-1.47) $1.39(1.17-1.47)$	was performed using
Level of evidence. If		1.20(1.10(1.17), 1.5)(1.17)	relative abundance
Ouality of evidence:		(1.28-2.52)	comparisons
A		(1120 2102)	determined by 16S
		Conclusion: The study	rRNA gene
		revealed that a vaginal	sequencing.
		microbiome depleted of	1 0
		Lactobacillus spp. is a risk	
		factor for PPROM in roughly	
		25% of cases, independent of	
		maternal characteristics and	
		preterm birth risk.	

Author Recommendations: Cervicovaginal fluid can be easily sampled. Quick and cost-effective point of care testing to assess Lactobacillus spp. abundance and the presence of pathobionts may be available in the near future.

Summary for current clinical practice question: Unlike genetic factors, such as antepartum hemorrhage and anatomical abnormalities, an unfavorable vaginal microbiome is a modifiable risk factor for PPROM. Identification of this subset of patients followed by manipulation of bacterial communities through a combination of antibiotic, prebiotic and probiotic therapies warrants further investigation and may represent a promising strategy for the reduction and/or prevention of PPROM and preterm birth.

Source: Brown, R., Marchesi, J., Lee, Y., Smith, A., Lehne, B., Kindinger, L., Terzidou, V., Holmes, E., Nicholson, J., Bennett, P. & MacIntyre, D. (2018). Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. *BMC Medicine*, *16*(9), 1-15. doi:10.1186/s12916-017-0999-x

Purpose/	Design	Results:	Strengths/
Sample:	(Methods/		Limitations:
-	Instruments):		
Purpose: PPROM	Prospective cohort	Vaginal dysbiosis	Strengths: A unique
precedes 30% of	study. Assessment	characterized by	assessment of vaginal
preterm births and is a	was made of	Lactobacillus spp.	microbiota prior to
risk factor for early	vaginal microbiota	depletion was present prior	rupture of fetal
onset neonatal sepsis.	prior to and	to the rupture of fetal	membranes and is the
As PPROM is strongly	following PPROM	membranes in approximately	largest study of the
associated with	using MiSeq-	a third of cases (0% vs. 27%,	vaginal microbiota in
ascending vaginal	based	P = 0.026) and persisted	the context of
infection, prophylactic	sequencing of 16S	following membrane rupture	PPROM to date.
antibiotics are widely	rRNA gene	(31%, P = 0.005). Vaginal	
used. The evolution of	amplicons and	dysbiosis was exacerbated	Limitations: Study
vaginal microbiota	examined the	by erythromycin treatment	size is limited. Given
compositions	impact of	(47%, P = 0.00009)	the observational nature
associated with	erythromycin	particularly in women	of the study, it was not
PPROM and the impact	prophylaxis on	initially colonized by	possible to
of antibiotics on	bacterial	Lactobacillus spp.	longitudinally sample a
bacterial compositions	load and	Lactobacillus depletion and	cohort of women
are unknown.	community	increased relative abundance	following PPROM who
	structures.	of Sneathia spp. were	did not receive
Sample/Setting:		associated with subsequent	erythromycin as part of
Antenatal clinics of		funisitis and early onset	treatment guidelines.
Queen Charlotte's and		neonatal sepsis.	Difficulty was noted in
Chelsea Hospital and			separating the potential
Chelsea and		Conclusion: The data	temporal impact of
Westminster Hospital		showed that vaginal	membrane rupture on
(n=250). A second		microbiota composition is a	shaping vaginal
cohort (n = 87).		risk factor for subsequent	community structure
		PPROM and is associated	from the
Level of Evidence: I		with adverse short-term	pharmacological effect
		maternal and neonatal	of erythromycin.
Quality of Evidence: C		outcomes.	

Author Recommendations: This study highlights vaginal microbiota as a potentially modifiable antenatal risk factor for PPROM and suggests that routine use of erythromycin for PPROM be re-examined.

Summary for current clinical practice question: It is hypothesized that prophylactic erythromycin would lead to a reduction of vaginal bacterial load, diversity, and richness. Treatment was associated with a shift towards vaginal dysbiosis, particularly in women initially colonized predominately by Lactobacillus species. The sub-analysis showed that in women with Lactobacillus spp. dominance, erythromycin exposure was associated with a shift towards a dysbiotic community structure in most cases. Erythromycin treatment was associated with a reduction in both richness and diversity in women with a Lactobacillus spp. depleted vaginal microbiota.

Source: Burris, H., Riis, V., Schmidt, I, Gerson, K., Brown, A., & Elovitz, M. (2019). Maternal stress, low cervicovaginal B-defensin, and spontaneous preterm birth. *American Journal of Obstetrics & Gynecology*, *2*(2). <u>https://doi.org/10.1016/j.ajogmf.2020.100092</u>

Purpose/	Design	Results:	Strengths/
Sample:	(Methods/		Limitations:
	Instruments):		
Purpose: To	Psychosocial	Results: Concurrent stress data for	Strengths:
determine whether	stress was	409 women who delivered at term	Prospective
psychosocial stress is	assessed using	and 110 with sPTB who were	enrollment of
associated with a	Cohen's	included in the final analytic	women in
mediator of the	Perceived	dataset. The majority of women in	pregnancy, careful
immune system in the	Stress Scale	the study were non-Hispanic black	phenotyping of
cervicovaginal space,	(PSS-14).	(72.8%), were insured by Medicaid	preterm births as
β -defensin–2, and to	Analyzed	(51.1%), and had PSS-14 scores	sPTB, and
examine the combined	cervicovaginal	<30 (80.2%). Counter to the	racial/ethnic
impact of high stress	fluid collected	hypothesis, high stress was	diversity. Combined
and low	on Dacron	associated with reduced odds of low	psychosocial stress
cervicovaginal β-	swabs between	CV-βD levels (adjusted odds ratio	assessments with a
defensin-2 levels on	16 0/7 weeks	[aOR], 0.63; 95% confidence	biologic biomarker
the odds of sPTB.	and 20 0/7 for	interval [CI], 0.38-0.99) (Table 2).	of immune function
Nested case control	human β-	The effect estimates between high	related to
study.	defensin-2.	stress and reduced odds of low CV-	reproductive health.
	Bivariate	βD were similar among women	
Sample/Setting: The	analyses of	with sPTB (aOR, 0.66; 95% CI,	Limitations:
Motherhood and	characteristics	0.28-1.58) and term birth (aOR,	Potential for residual
Microbiome (M&M)	among sPTB	0.56; 95% CI, 0.56–0.90),	confounding and
cohort. Penn Medicine	cases and term	interaction $P = .41$.	reliance on
in Philadelphia. 519	controls.		perceived stress as
women with perceived	Among the	Conclusion: The maternal	opposed to a
stress assessments,	term and sPTB	psychosocial stress was associated	biomarker of stress.
$CV-\beta D$ measured, and	births, analyzed	with reduced odds of low CV- β D,	Positive findings
either a sPTB or a	CV-βD levels	but the combination of high stress	could be due to
term (≥38 completed	for 430 and 123	and low CV- β D conferred	chance in the setting
weeks of gestation)	women, that	significantly higher odds of sPTB.	of multiple testing.
delivery.	were frequency	$CV-\beta D$ may serve as a biological	Secondary analysis
	matched by	resilience factor to protect women	of an already-
Level of Evidence: I	race/ethnicity.	from adverse exposures, including	completed cohort
		stress in pregnancy, and improve	study was
Quality of Evidence:		chances of a full-term delivery.	pertormed.

Author Recommendations: Stress can contribute to depression and anxiety, and that pregnant women should be screened for these conditions during the course of prenatal care to improve outcomes.34 It is possible that biomarkers such as CV- βD may eventually serve as additional screening and risk stratification tools for sPTB.

Summary for current clinical practice question: Although stress and low CV- β D may be independent risk factors additively resulting in higher sPTB risk, it is also possible that stress causes increases in CV- β D in some women who are thus protected from sPTB but not in other women who remain at higher risk. Larger cohorts, combining several risk factors including psychosocial and molecular biomarkers may improve prediction and eventually target interventions to reduce sPTB.

Source: Elovitz, M., Gajer, P., Riis, V., Brown, A., Humphrys, M., Holm, J. & Ravel, J. (2019).				
Cervicovaginal microbiota and local immune response modulate the risk of spontaneous preterm				
delivery. Nature Communi	ications, 10(1305),1-	-8. https://doi.org/10.1038/s41467-019-	09285-9	
Purpose/	Designs	Results:	Strengths/	
Sample:	(Methods		Limitations:	
	Instruments):			
Purpose: To accurately	A prospective	Six major cervicovaginal	Strengths: It	
identify women at risk	cohort study.	community state types (CSTs) were	identified	
for spontaneous preterm	Biospecimens	noted. Four were predominated by	specific	
birth early in pregnancy	were obtained.	either Lactobacillus crispatus (CST	signatures	
and determine	Cervicovaginal	I),	combining both	
therapeutic strategies to	specimens were	Lactobacillus gasseri (CST II),	immune and	
reduce this significant	self-collected by	Lactobacillus iners (CST III) or	microbial	
health burden.	the participants	Lactobacillus jensenii (CST V), and	factors	
	or collected by a	two (CST IV-A and CST IV-B)	associated with	
Sample/Setting: 2000	research	comprised a wide array of strict and	spontaneous	
women with singleton	coordinator at	facultative bacterial anaerobes. The	preterm birth.	
pregnancies. The	three different	frequency of CSTs was significantly		
population studied was	prenatal visits:	different in African American (AA)	Limitations:	
mostly African	16-20 weeks, 20-	and non-African American women.	The clinical	
American with a mean	24 weeks, and	At visit 1, 20% and 45% of AA	significance of	
maternal age of 28 years	24-28 weeks.	women were in CST I or CST	any differences	
old. Philadelphia, PA.	Subjects were	IVA/IVB, as compared to 50% and	or microbial	
	followed to	\sim 15% of non-AA women. These	immune	
Level of Evidence: III	delivery.	differences persisted at visit 2 and	correlations	
	All delivery	visit 3. The frequency of CST III	cannot be fully	
Quality of Evidence: A	outcomes were	was higher in AA women at visit 3.	interpreted until	
	recorded.	CST V was consistently lower in	these	
	Controls were	AA than in non-AA women	biomarkers are	
	frequency	throughout the study.	validated in	
	matched by self-		another clinical	
	reported race to	Conclusion: The study	trial outside of	
	the cases.	shows that immune factors, such as	this case-control	
		β -detensin-2, can modulate the risk	study.	
		associated with the lack of		
		Lactobacıllus spp., but are also		
		critical even when Lactobacillus		
		spp. are in high relative abundance	•	

Authors recommendations: The current standards of care and targeting women with a prior spontaneous preterm birth will not significantly decrease the public health burden from spontaneous preterm birth. This study will help lead to prevention strategies. Most importantly, this work will lead to innovative therapeutic opportunities to prevent spontaneous preterm birth including combination of microbiome-based therapeutics and immune modulators earlier in pregnancy.

Summary for current clinical practice question: The findings address the long-held belief that not having Lactobacillus spp dominated cervicovaginal microbiota is strongly associated with adverse pregnancy outcomes. In pregnancy and non-pregnancy, a larger proportion of African American women compared to non-African American women do not have Lactobacillus spp in high relative abundance in the cervicovaginal microbiota.

Source: Freitas, A., Bocking, A., Hill, J., & Money, D. (2018). Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. *BMC*, *6*(117), 1-15. <u>https://doi.org/10.1186/s40168-018-0502-8</u>

Purpose/Sample:	Designs	Results:	Strengths/Limitations:
	(Methods		0
	Instruments):		
Purpose: To	Retrospective cohort	Assessment of alpha	Strengths: The overall
characterize the	study. Analyzed	diversity revealed that	findings were similar to
vaginal microbiota	vaginal microbiota of	microbiomes of women who	two other studies,
of pregnant women	women who	delivered preterm were	which provided the
who had	experienced	richer (Chaol richness	ability to compare
spontaneous	spontaneous preterm	46.3 ± 24.1) and more	different study designs
preterm birth and	birth. Compared	diverse (Shannon diversity	that addressed the same
compare to those of	resulting microbial	index 1.8 ± 1.1) when	research question.
pregnant women	profiles to those of	compared to those of women	
who delivered at	pregnant women who	in the term group	Limitations: The study
term.	delivered at term.	$(36.2 \pm 14.8; 1.2 \pm 0.8)$ (t	design included
	Self-administered	test, $p < 0.01$). Higher	comparison of samples
Sample/Setting:	vaginal swabs were	bacterial loads were detected	collected in previously
Ontario, Canada.	taken at 16 weeks	in samples from the preterm	published studies and
Clinics. Term	gestation. Specimens	group (7.7 ± 0.9) compared	the observational
deliveries (n=170),	from all cohorts were	to term group (8.0 ± 0.7) (t	clinical trial (OBS) due
preterm (n=46)	processed similarly in	test, $p = 0.049$). Most	to the availability of
	terms of sample	microbial profiles from the	foundational data on
Level of Evidence:	collection, storage,	preterm group (80.5%) were	women who delivered
III	DNA extraction,	assigned to Lactobacillus-	at term and the
	library preparation	dominated CST: CST I (37%	infeasibility of
Quality of	and sequencing. Total	of profiles), CST III	collecting large
Evidence: A	bacterial DNA	(17.4%), CST V (15.2%) and	numbers of samples at
	(qPCR) and detection	CST II (10.9%). The	11-16 weeks gestation
	of Mollicutes (PCR).	remaining profiles (19.5%)	from women who
	Quantitative PCR	were assigned to CST IVA,	would go on to deliver
	(qPCR). CPN60	IVC or IVD.	pre-term.
	Universal Target		
	(UT)PCR and	Conclusion: The results	
	pyrosequencing.	confirm previous reports of	
	Analysis of	an association between	
	operational taxonomic	Mollicutes and spontaneous	
	units (OTU).	preterm birth and further	
	Statistical analysis.	suggest that a more diverse	
		microbiome may be	
		important in the	
		pathogenesis of some cases.	

Authors Recommendations: Future study should include evaluation of the microbial metabolite production and host response to further elucidate factors leading to spontaneous preterm birth and identify women at risk early in pregnancy.

Summary for current clinical practice question: This study provides valuable evidence of subtle alterations in the microbiome associated with preterm birth that requires further study utilization sequencing methodology.

Source: Honda, H.	, Yokoyama, T., Akimoto, Y	., Tanimoto, H., Teramoto, M. &	: Teramoto, H. (2014).
The frequent shift t	o intermediate flora in prete	rm delivery cases after abnormal	vaginal flora
screening. Scientifi	c Reports, 4:4799. doi:10.10	38/srep04799	
Purpose/	Design	Results:	Strengths/
Sample:	(Methods/Instruments):		Limitations:
Purpose: To	Randomized control	In the Intervention group, the	Strengths: There are
evaluate whether	study. The pregnant	frequency of normal flora was	very few trials in
specific	women were divided into	67.4%, that of intermediate	which the pregnant
screening	two groups: The	flora was 19.0%, and that of	subjects, regardless
reduces the	Intervention group, i.e.,	bacterial vaginosis was	of their normal or
preterm delivery	the pregnant women who	13.6%. The admission rates	abnormal vaginal
rate for general-	participated in service A,	for threatened preterm	flora, were divided
population	and the Control group,	delivery in the Intervention	into an intervention
pregnant women.	i.e., the pregnant women	group and Control group were	group and a control
	who	8.36% and 11.0%, and the	group.
Sample/Setting:	participated in service B.	mean gestational ages at the	
A total of 1,735	For each woman in the	admission for threatened	Limitations: The
pregnant women,	Intervention group, a	preterm delivery of the	screening test and the
574 as the	vaginal smear was taken	Intervention and Control	treatment of
Intervention	in the second trimester	groups was 28.1 +/- 5.01	abnormal vaginal did
group and 1,161	and Gram-stained for the	weeks and 30.1 +/- 4.15	not contribute to the
as the Control	assessment of abnormal	weeks. The preterm delivery	reduction in the
group, were	flora, as diagnosed by the	rates in the Intervention group	proportion of
analyzed in the	Nugent scoring system.	and Control group were	intermediate flora, or
present study.	Nugent scores of 0–3	3.48% and 4.31%. The mean	to the admission rate
The medical	were graded as normal	gestational ages at the preterm	with a threatened
records of the	flora, 4–6 as intermediate	delivery in the intervention	preterm delivery, or
pregnant women	flora, and $7-10$ as	and Control groups were 34.6	to the preterm
who delivered at	bacterial vaginosis.	+/- 4.15 weeks and 36.2 +/-	delivery rate. Without
Hiroshima City		0.72 weeks.	screening control
Asa Hospital.			group no way to
		Conclusion: The screening	know in control
Level of		test and the treatment of	group how many had
Evidence: 1		abnormal vaginal flora in the	abnormal flora.
		present study did not	
Quality of		contribute to the reduction in	
Evidence: A		the proportion of intermediate	
		flora, or to the admission rate	
		with a threatened preterm	
		delivery, or to the preterm	
		delivery rate.	· · · ·
Author Recomme	ngations: Increasing evider	ice indicates that intermediate flo	ra is more closely

Author Recommendations: Increasing evidence indicates that intermediate flora is more closely associated with preterm delivery compared to bacterial vaginosis. The shift of vaginal flora from normal to intermediate flora among the cases of preterm delivery, suggests that the choice of antimicrobial agents and the timing of the screening and the treatment of abnormal vaginal flora in pregnant women should be reconsidered.

Summary for current clinical practice question: These findings strongly suggest that preterm delivery is associated with intermediate flora rather than bacterial vaginosis.

Source: Hyman, R., Fukushima, M., Jiang, H., Fung, E., Rand, L., Johnson, B., Vo, K., Caughey, A., Hilton, J., Davis, R., & Guidice, L. (2014). Diversity of the vaginal microbiome correlates with preterm birth. *Reproductive Sciences*, *21*(1), 32-40. doi: 10.1177/19337/9113488838

Purpose/	Design	Results:	Strengths/
Sample:	(Methods/Instrum		Limitations:
-	ents):		
Purpose: Composition of the	Analyzed 45 single	Results: Women who	Strengths:
vaginal microbiome has a	gestation	went on to deliver at	Observed high
significant population-specific	pregnancies that	term were more likely	concordance in the
impact on PTB risk. Several	met the criteria for	to exhibit L. crispatus	directionality of
studies have focused on	spontaneous PTB	predominance in the	differences in
populations predominantly of	(23–36 weeks 6	vaginal microbiome	abundance levels
European descent. Replicated in	days of gestational	(P = 0.014). L.	of preterm and
a cohort of predominantly African	age) and 90 single	crispatus was greatly	term groups. Able
descent. Longtitudinal cohort	gestation	reduced in PTB	to confirm that
study.	pregnancies that	samples, and several	BVAB1,
	extended through	other taxa, including	Megasphaera
Sample/Setting: Community	term (≥39 weeks).	BVAB1, Prevotella	phylotype 1 and
resource samples collected	The TB controls in	cluster 2 and Sneathia	Sneathia species
during longitudinally 1,572	the MOMS-PI PTB	amnii, were more	were elevated in a
pregnancies of women from	study were case	abundant in PTB	preterm cohort.
diverse ancestries, and data	matched to the PTB	samples (q < 0.05).	
generated from samples collected	group for age, race	Many taxa identified	Limitations:
from 597 pregnancies in a	and annual	as associated with	Examined only the
collaborative effort under the	household income.	PTB: S. amnii	spontaneous
umbrella of the National Institutes	The earliest	(P = 0.0015),	preterm cases.
of Health's integrative Human	samples were	Prevotella cluster 2	Sample sizes were
Microbiome Project. Analysis of	collected at 18	(P=0.0031), BVAB1	small, in the range
the longitudinal, comprehensive,	weeks of gestation.	(P = 0.0037) and P.	5–18 spontaneous
multi-omic profiling of vaginal	The respective	amnii (P = 0.0031).	PTB cases. Not
samples from 45 women who	mean and median		statistically
experienced spontaneous PTB	gestational age at	Conclusion: Women	significant, likely
and 90 case-matched controls, in	delivery was 34,	of African ancestry	due to sample
a cohort of women of	0/7 and 35, 6/7 for	have a greatly	size, cohort
predominantly African ancestry.	the PTB group and	increased risk of PTB	characteristics,
	40, 0/7 and 39, 6/7	compared with women	and differences in
Level of Evidence: III	for the TB group.	of European ancestry.	experimental
		BVAB1, which is	design.
Quality of Evidence: A		positively associated	
		with PTBs, is more	
		common in women of	
		African ancestry.	

Author Recommendations: The findings contribute to an understanding of how microbial markers for PTB vary across populations.

Summary for current clinical practice question: Further studies are needed to determine whether the signatures of PTB reported in the present study replicate in other cohorts of women of African ancestry. To establish whether population-specific microbial markers can be ultimately integrated into a generalizable spectrum of vaginal microbiome states linked to the risk for PTB.

Source: Jayaprakash, T., Wagner, E., Schalkwyk, J., Albert, A., Hill, J. & Money, D. (2016). High diversity and variability in the vaginal microbiome in women following preterm premature rupture of membranes (PPROM): A prospective cohort study. *PLoS ONE*, *11*(11), e0166794. doi:10.1371/journal.pone.0166794

Purpose/	Design	Results:	Strengths/
Sample:	(Methods/		Limitations:
	Instruments):		
Purpose: To characterize the vaginal microbiota of women following preterm premature rupture of membranes (PPROM), and determine if microbiome composition predicts latency duration and perinatal outcomes. Sample/Setting: Canada. 51 Women with PPROM between 24+0 and 33+6 weeks gestational are (GA)	Randomized control trial. Microbiome profiles, based on pyrosequencing of the cpn60 universal target, were generated from vaginal samples at time of presentation with PPROM, weekly thereafter, and at delivery.	Mean GA at PPROM was 28.8 wk (mean latency 2.7 wk). Microbiome profiles were highly diverse but sequences representing Megasphaera type 1 and Prevotella spp. were detected in all vaginal samples. Only 13/70 samples were dominated by Lactobacillus spp. Mycoplasma and/or Ureaplasma were detected by PCR in 81% (29/36) of women, and these women had significantly lower GA at delivery and correspondingly lower birth weight infants than Mycoplasma and/or Ureaplasma negative women. Mean GA at PPROM was 29 weeks; mean latency period was 18 days. As expected, latency (days) was negatively correlated ($\rho s = -$ 0.390, n = 36, p = 0.019) with GA at PPROM because the number of potential latency days decreases with increasing GA at PPROM. Correlation with body mass index (BMI) was noted ($\rho s = -0.511$, n = 31, n = 0.003)	Strengths: It is an in-depth study that characterizes the microbiome following preterm premature rupture of membranes, providing new insights into the microbial profile of the hard to culture bacterial community in these high risk pregnancies. Limitations: Small number of women followed and the lack of pre-rupture samples. The standard use of broad spectrum
Level of Evidence: II Quality of Evidence: A		Conclusion: Prevotella spp. and Megasphaera type I were ubiquitous. The presence of Mollicutes in the vaginal microbiome was associated with lower GA at delivery. The microbiome was remarkably unstable during the latency period.	antibiotics in the context of PPROM means that the natural changes of the microbiome during latency can no longer be evaluated.
Author Recommendations: Women with PPROM had mixed, highly variable vaginal microbiota but the specific type of microbiome profile at PPROM did not correlate with latency duration. The highly unstable vaginal microbiota of women in this study demonstrates the need for more intense study of the relationship of genital tract microbiota with PPROM.			

Summary for current clinical practice question: Understanding the microbiome associated with PTB and PPROM is critical to creating strategies to prevent this reproductive outcome and to determine when to initiate delivery.

Source: Kindinger	, L., Bennett, P., Lee, Y., Marche	esi, J., Smith, A., Cacciat	tore, S., Holmes, E.,		
Nicholson, J., Teoh	n, T. & MacIntyre, D. (2017). Th	e interaction between va	ginal microbiota, cervical		
length, and vaginal	progesterone treatment for prete	erm birth risk. <i>BioMed Co</i>	<i>entral, 5</i> (6), 1-14.		
doi:10.1186/s40168	8-016-0223-9	Γ			
Purpose/Sample:	Design	Results:	Strengths/		
	(Methods/Instruments):		Limitations:		
Purpose:	A cross-sectional cohort	Lactobacillus iners	Strengths: The study		
To assess the	study. 16 weeks of gestation,	dominance at 16	showed a relationship		
relationship	cervico-vaginal fluid was	weeks of gestation	between relative		
between vaginal	sampled from the posterior	was significantly	abundance of vaginal		
microbiota and	fornix under direct	associated with both	Lactobacillus species and		
cervical length	visualization. For the	a short cervix <25	risk of subsequent		
(CL) in the	duration of the study both	mm (n = 15, P < 0.05)	preterm birth. The		
second trimester	units employed a policy of	and preterm birth	strength was shown by a		
and preterm birth	CL screening every 3 weeks	<34+0 weeks (n = 18;	high spontaneous preterm		
risk.	until 25 weeks with the	P < 0.01; 69% PPV).	birth rate ($n=34/161$). The		
	indication for the intervention	Lactobacillus	study allowed for		
Sample/Setting:	being a CL <25 mm at TVS	crispatus dominance	characterization of		
Two tertiary	measured at <23 weeks	was highly predictive	microbial profiles		
London maternity	gestation.	of term birth	associated with both early		
units. 161		(n = 127, 98% PPV).	and late preterm birth		
women.			providing a broader		
		Conclusion:	observational base for		
Level of		L. iners dominance of	microbial-host		
Evidence: II		the vaginal	interactions in pregnancy.		
		microbiota at 16			
Quality of		weeks of gestation is	Limitations: Limited by		
Evidence: B		a risk factor for	the use of denaturing		
		preterm birth. L.	gradient gel		
		crispatus dominance	electrophoresis (DGGE)		
		is protective against	for the characterization of		
		preterm birth.	only major Lactobacillus		
			species and could not		
			identify other pathobionts		
			in the samples.		
Author Recomme	ndations: The clinical relevance	of the findings is difficu	It to establish due to the		
small sample size and the heterogenous nature of the cohort. The protective role of Lactobacillus					
species in the context of reproductive health shows major species-specific differences in the capacity to					
prevent pathobiont colonization and viral infections that are driven largely by maternal host-bacterial					
metabolite interactions at the vaginal mucosa interface.					
Summary for current clinical practice question: The use of culture-independent characterization of					
vaginal bacterial communities in a high-risk population, shows that the perceived benefit of lactobacilli					
dominance in pregnancy is species specific: L. crispatus is advantageous and associated with term					
delivery whereas L. iners is associated with increased risk of preterm delivery. L. iners is associated					
with increased risk of preterm delivery, more specifically risk of early delivery <34 weeks rather than					
late (34-37 weeks) preterm birth. High relative abundance of L. crispatus is highly specific for term					
birth.					
Source: Myhre, R., Brantsaeter, A., Myking, S., Gjessing, K., Sengpiel, V., Meltzer, H., Haugen, M., & Jacobsen, B. (2011). Intake of probiotic food and risk of spontaneous preterm delivery. *American Journal of Clinical Nutrition*, *93*, 151-157. <u>https://doi.org/10.3945/ajcn.110.004085</u>

Purpose/	Design	Results:	Strengths/
Sample:	(Methods/		Limitations:
	Instruments):		
Purpose: Preterm	Basis of answers	Results:	Strengths: The
delivery represents a	to a food-	Pregnancies that	prospective design with collection
substantial problem in	frequency	resulted in	of dietary data and the FFQ
perinatal medicine	questionnaire.	spontaneous	completed during 17-22 wk. of
worldwide. Current	Studied intake	preterm delivery	gestation, before pregnancy
knowledge on	of milk-based	were associated	delivery to avoid confounding by
potential influences of	products	with any intake of	retrospectively answered
probiotics in food on	containing	milk-based	questionnaires. The strict and
pregnancy	probiotic	probiotic products	extensive sample inclusion and
complications caused	lactobacilli and	in	exclusion criteria make this a very
by microbes is limited.	spontaneous	an adjusted model	homogenous set of cases and
Hypothesized that	preterm delivery	[odds ratio (OR):	controls. The sample size was large
intake of food with	by using a	0.857; 95% CI:	and represents women from
probiotics might	prospective	0.741, 0.992].	all over Norway with diverse
reduce pregnancy	cohort study	By categorizing	dietary habits and a wide range of
complications caused	design ($n = 950$	intake into none,	intake frequencies of probiotic
by pathogenic	cases and	low, and high	products.
microorganisms and,	17,938 controls)	intakes of the milk	
through this, reduce	for the	based probiotic	Limitations: Because the
the risk of	pregnancy	products, a	implicated pregnancy conditions in
spontaneous preterm	outcome of	significant	PTD are
delivery. Prospective	spontaneous	association was	presumably atypical and subclinical
cohort study.	preterm delivery	observed for	variants of BV, and the biological
	<	high intake (OR:	dynamics of probiotic food intake
Sample/Setting: This	37 gestational	0.820; 95% CI:	and effect of maintaining these
study was performed	weeks. Analyses	0.681, 0.986)	dynamics under control are
in the Norwegian	were adjusted		unknown, the amount and
Mother and	for the	Conclusion:	concentration of probiotic intake
Child Cohort	covariates of	Women who	needed for an effect is an
	parity, maternal	reported habitual	important aspect. results thus fit a
Level of Evidence: III	educational	intake of probiotic	general hypothesis of subsets of
	level, and	dairy	sPTD
Quality of Evidence:	physical	products had a	being caused partly by an increased
В	activity.	reduced risk of	infection or inflammation
		spontaneous	state representing an increased level
		preterm delivery.	of systemic inflammation.

Author Recommendations: Observed a protective effect of intake of probiotic milk products with sPTD.

Summary for current clinical practice question: The findings are of importance to perinatal care and has the potential to improve current pregnancy health care. Intake of milk products that contain probiotics might influence and reduce pregnancy complications, possibly through an effect of probiotics on vaginal tract infections and a reduction in overall inflammatory state in keeping with a systemic inflammation hypothesis.

Source: Oh, H., Seo, S., Kong, J., Lee, J., & Kim, M. (2015). Association between obesity and cervical microflora dominated by Lactobacillus iners in Korean women. Journal of Clinical Microbiology, 53, doi:10.1128/JCM.01387-15. **Purpose**/ Design/ Results: Strengths/ Sample: (Methods/ Limitations: Instruments): Longtitudinal Results: The **Purpose:** Assessed the **Strengths:** This study association between obesity cohort study. proportion of was the first to and the cervical Pyrosequencing Lactobacillus iners demonstrate that the Lactobacillus composition, was performed increased and that of cervical Lactobacillus which has not been using cervical microflora of obese Lactobacillus crispatus swabs collected examined previously. decreased according to women differed from from 76 normal body mass that of nonobese index (BMI) Sample/Setting: Women 18 participants with Women. to 65 years of age who negative results categories, i.e., participated in the Korean for cervical underweight (BMI of Limitations: Cross-HPV cohort study, from intraepithelial <18.5 kg m2), normal sectional studies are 2006 to the present, were neoplasia (CIN) weight (BMI of 18.5 limited by the fact that included in this study. Korea and 57 participants to 22.9 kg m2), they are carried out at University Guro Hospital. . with CIN, based overweight (BMI one point in time and 76 women randomly on histological of 23.0 to 24.9 kg m2), give no indication of the enrolled. examinations. and obese (BMI of sequence of events, i.e., Cluster analysis of whether exposure >25 kg m2). Level of Evidence: III nine Lactobacillus The L. iners-dominant occurred before, after, or spp. was type had a significant during the onset of the **Quality of Evidence:** B performed, and association with disease outcome five cluster types obesitv (38). Therefore, it is were identified. (odds ratio [OR], 7.55 impossible to infer The association [95% confidence causality between between obesity obesity interval [CI], 1.18 to and the 48.2]), compared to and the Lactobacillus Lactobacillus the L. crispatustype dominated by L. community was dominant type iners in this study. The assessed by small sample size of this logistic regression study limited the **Conclusion**: Obesity analysis after was associated with estimation of the adjustment for association and led to a cervical microflora confounding wide 95% confidence dominated by L. iners factors. in reproductive-age interval. women without dysplasia. Author Recommendations: We suggest that obesity may promote the predominance of L. iners in the cervicovaginal ecosystem and that this state may increase the risk of obstetric and neonatal complications related to obesity, such as preterm birth, in Korean women of reproductive age **Summary for current clinical practice question**: More evidence is needed to reveal the causal link between obesity and the composition of the microbiota and to explain the role of the cervicovaginal

microbiota in the maintenance of a healthy reproductive tract.

Source: Petricevic, L., Domig, K., Nierscher, F., Sandhofer, M. Fidesser, M., Krondorfer, I., Husslein, P., Kneifel, W. & Kiss, H. (2014). Characterization of the vaginal Lactobacillus microbiota associated with preterm delivery. *Scientific Reports*, *4*, 5136. doi:10.1038/srep05136

Purpose/	Design	Results:	Strengths/
Sample:	(Methods/		Limitations:
	Instruments):		
Purpose: To assess the	Prospective	44% of women delivered at term and	Strengths:
vaginal microbiome	cohort study. One	92% of women who delivered preterm	The mean
throughout full-term	vaginal smear	had only one Lactobacillus spp.	gestational
uncomplicated	lateral vaginal	detectable by PCR (DGGE) and	age among
pregnancy. To describe	wall and the	sequencing in their vaginal specimens.	women with
if different diversity of	posterior fornix	56% women who delivered at term,	preterm birth
vaginal lactobacilli in	was taken from	and 8% who delivered preterm had a	was 35 weeks,
first trimester of	each participant,	combination of 2, or more	it was
pregnancy could have	transferred to a	Lactobacillus spp. Statistically	assumed that a
an influence on	microscopy slide,	significant difference (p, 0.0009).	mechanism
pregnancy outcome.	Gram-stained and	Comparing mean number of	other than first
	evaluated.	Lactobacillus species detected from	trimester
Sample/Setting:	Nugent	pregnant women were observed to be	vaginal
Medical University of	scoring system	statistically significant difference	infection—
Vienna. The study	was used. The	between term and preterm birth group,	one involving
population consisted of	smears were	too (p, 0.004), (1.8 6	L. iners as a
111 women aged 18–40	transferred to	0.9 vs. 1.2 6 0.8).	single
years with low-risk	transport medium		Lactobacillus
singleton pregnancies	to obtain the	Conclusion: There is an association	species played
between 11-14 weeks	stability of	between the vaginal presence of a	a role in these
of gestation scheduled	present vaginal	single vaginal Lactobacillus species in	preterm
to give birth at our	microflora.	late first trimester of pregnancy,	deliveries.
department.		mostly L. iners, and preterm delivery.	There was a
		Displacement of lactobacilli from the	statistically
Level of Evidence: III		vagina frequently leads to an abnormal	significant
		vaginal microflora which in early	difference
Quality of Evidence: B		pregnancy, is a risk factor for PTB and	between
		low birth weight. Women with a	women with
		normal vaginal microbiota in the first	term and
		trimester have been found to have a	preterm
		75% lower risk of	deliveries.
		delivery before 35 weeks of pregnancy	
		than women with an abnormal vaginal	Limitations:
		microflora.	Sample size.

Author Recommendations: There is a need for further research and discussion necessary on the influence of lactic acid bacterium in pregnancy. L. iners is the smallest Lactobacillus discovered to date and is a frequently detected bacterial species in the vagina that demands special nutrient requirements. Summary for current clinical practice question: This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery.

Source: Romero, R., Hassan, S., Gajer, P., Tarca, A., Fadrosh, D., Nikita, L., Galuppi, M., Lamont, R., Chaemsaithong, P., Miranda, J., Chaiworapongsa, T. & Ravel, J. (2014). The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. *Microbiome*, *2*(4), 1-19. http://www.microbiomejournal.com/content/2/1/10

Purpose/	Design	Results:	Strengths/
Sample:	(Methods/		Limitations:
	Instruments):		
Purpose: To	A retrospective	The mean within-subject log	Strengths:
characterize the	case-control	Jensen-Shannon distance of	Longitudinal nature
vaginal microbiota	longitudinal study.	pregnant women was significantly	of the study. Frequent
throughout normal	Sample of vaginal	lower than that for non-pregnant	sampling protocol.
human pregnancy	fluid was collected	women (difference in means -	Quality of the
using sequence-	under direct	0.473 log units; that is, 1.6-fold	sequence-based
based techniques.	visualization from	lower Jensen-Shannon distance,	techniques (16S
	the posterior	P < 0.001). Evaluation was made	rRNA). Analytical
Sample/Setting:	vaginal fornix by	of the ability of a community to	methods used.
Non-pregnant	an obstetrician or a	shift to CST IV (A or B) by	Inclusion of relevant
women (n = 32)	midwife using a	computing the Jensen-Shannon	clinical groups: non-
and pregnant	Dacron swab.	distance between each community	pregnant and normal
women who	Samples were	state and the mean community	pregnant women.
delivered at term	collected every 4	state of all samples assigned to	
(38 to 42 weeks)	weeks until 24	CST IV-A and CST IV-B. Jensen-	Limitations: The use
without	weeks of gestation,	Shannon distances using a GEE	of primer 27 F could
complications (n =	and every 2 weeks	model of pregnant women was	be a limitation of this
22). Obstetric	until the last	significantly higher than that for	study; this primer
clinic. Detroit,	prenatal visit. Non-	non-pregnant women (difference	may have
Michigan.	pregnant patients	in means 0.13 log units; that is,	underestimated the
	were self-collected	1.14-fold, $P < 0.001$). These results	true relative
Level of	sampled twice	indicate that bacterial communities	abundance of 16S
Evidence: I	weekly for 16	in pregnancy do shift from one	rRNA genes of
	weeks using	CST dominated by Lactobacillus	Bifidobacteriaceae in
Quality of	validated methods	spp. to another CST dominated by	general, and those of
Evidence: A	previously	Lactobacillus spp., but rarely to	the genus G.
	described. All	CST IV-A or CST IV-B.	vaginalis, a bacterium
	samples were		commonly found in
	Gram-stained and	Conclusion: Differences in the	the vagina of women
	analyzed using the	composition and stability of the	who experience
	Nugent score.	microbial community between	bacterial vaginosis.
		pregnant and non-pregnant women	
		were observed.	

Author Recommendations: Despite the apparently limited sample size, the identification of significant differences provides evidence that the study of the vaginal microbiota during pregnancy can yield important insights into the relationship between the structure and dynamics of microbial communities and pregnancy outcome. Further studies are required to confirm these findings, extend the observations, and elucidate the role of microorganisms in adverse pregnancy outcome.

Summary for current clinical practice question: Baseline stability patterns of the vaginal microbiota in pregnancy were established. This could serve as the basis to study the relationship between the vaginal microbiota and adverse pregnancy outcomes. The characterization of the vaginal microbiota in pregnancy has the potential to yield information of prognostic, diagnostic, and therapeutic value.

Source: Romero, R., Hassan, S., Gajer, P., Tarca, A., Fadrosh, D., Bieda, J., Chaemsaithong, P., Miranda, J., Chaiworapongsa, T., & Ravel, J. (2014). The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at birth. *BioMed Central*, 2(18), 1-15, http://www.microbiomejournal.com/content/2/1/18

Diomica Central, 2	$(10), 1 10, \frac{100}{10}, 100, 100, 100, 100, 100, 100, 100, $		
Purpose/	Designs	Results:	Strengths/
Sample:	(Methods/		Limitations:
	Instruments):		
Purpose: To	Nested case-control	Two of the CSTs that were most often	Strengths: The
determine	study. Cases and	dominated were L. crispatus (CST I)	longitudinal
whether the	controls were	and L. iners (CST III). Communities	nature. The quality
vaginal	selected in a 1:4	that clustered in CST IV-B lacked a	of the sequence-
microbiota of	ratio. Speculum	substantial number of Lactobacillus	based techniques
pregnant women	examination at each	spp. and had higher relative	(16S rRNA gene)
who	visit; a sample of	abundance of G. vaginalis, BVAB1,	which decreased
subsequently had	vaginal fluid was	A. vaginae and Megasphaera spp.	bias over other
a spontaneous	collected under	type 1. Frequencies of CST I, CST III	methods. The use
preterm delivery	direct visualization	and CST IV-B in the entire sample set	of analytical and
is different from	from the posterior	were 18.6%, 58.5% and 22.9%. There	statistical methods
that of women	vaginal fornix.	were no differences in the frequency	specifically
who had a term	Collection every 4	of the different CSTs (CST I, III, IV-	designed for the
delivery.	weeks until 24	B) between women who delivered at	analysis of
	weeks of gestation,	term and those who delivered preterm	longitudinal
Sample/Setting:	and then every 2	(CST I: 18.4% versus 19.6%; CST	studies.
The study	weeks until the last	III: 59.4% versus 53.6%; CST IV-B:	
included 18 cases	prenatal visit. A	22.2% versus 26.8%).	Limitations:
and 72 controls.	comparison of		Sample size. 16S
Obstetric clinic.	microbial diversity	Conclusion : The relative abundance	rRNA gene
Detroit,	(Shannon Diversity	of four Lactobacillus spp. (L.	sequence-based
Michigan.	Index; SDI) was	crispatus, L. jensenii, L. gasseri and	techniques were
	used. LME model	L. vaginalis) increased as a function	used. A 16S rRNA
Level of	was used. The SDI	of gestational age. The mean relative	gene-based survey
Evidence: I	values were log-	abundance in the third interval was	is a powerful tool
	transformed to	higher than in the first interval of	to but this
Quality of	improve normality	gestation. The relative abundance of	approach provides
Evidence: B	of the data.	eleven other bacterial taxa were found	limited
		to decrease with advancing	information about
		gestational age.	the function and
			role of the vaginal
			microbial
			community in
			health and disease.

Authors Recommendations: The composition of the vaginal microbiota during normal pregnancy changed as a function of gestational age, with an increase in the relative abundance of four Lactobacillus spp. and decreased in anaerobe or strict-anaerobe microbial species as pregnancy progressed. Additional studies on the changes in the vaginal microbiome and spontaneous preterm birth are needed.

Summary for current clinical practice question: The study observations are relevant to understanding the changes in the vaginal ecosystem with normal pregnancy. Moreover, it is possible that these temporal changes may be meaningful in assessing health and predisposition to disease states.

Source: Stafford, G., Parker, J., Amabebe, E., Kistler, J., Reynolds, S., Stern, V., Paley, M. & Anumba, D. (2017). Spontaneous preterm birth is associated with differential expression of vaginal metabolites by Lactobacilli-dominated microflora. *Frontiers in Physiology*, *8*(615), 1-15. doi:103389/fphys.2017.00615

Purpose/	Design	Results:	Strengths/	
Sample:	(Methods/		Limitations:	
	Instruments):			
Purpose: To	Prospective pilot	Observation was made of a greater	Strengths: 16S	
examine the	study. Two high	proportion (>2-fold) of CSTI (L.	rRNA gene	
differences in	vaginal swab (HVS)	crispatus) dominated microbiota present	sequencing is a	
vaginal microbiota	samples from the	in the term than the preterm groups at	powerful tool	
and metabolite	posterior vaginal	20–22 weeks (40.32 vs. 16.66%,	to establish the	
profiles of women	fornix with dry	Fisher's exact test, $P = 0.0002$) and a	composition of	
who delivered	polystyrene Dacron	slightly higher proportion in the 26–28	the microbial	
prematurely	swabs were	weeks group (20.69 vs. 16.66%, P =	community of	
compared to their	collected. 16S rRNA	0.03. The proportion of patients' vaginal	clinical niches	
term counterparts.	sequencing, the	samples that were categorized as CSTV	in relation to	
	vaginal microbiota	(L. jensenii dominant) was more than 2-	health and	
Sample/Setting:	from cervicovaginal	fold lower in the term than preterm	disease and to	
Antenatal clinics	fluid samples was	groups at 20–22 (9.68 and 22.22%, P =	identify	
and the labor ward	characterized into	0.0002) and 26–28 weeks groups (10.34	Frontiers in	
assessment unit of	five Community	and 25%, P = 0.03). At 26–28 weeks	Physiology and	
the Jessop Wing	State Types (CST)	none of the preterm patient samples	differential	
Maternity	dominated by	were dominated by CSTII (L. gasseri)	expression of	
Hospital,	Lactobacillus spp.:	in contrast to 28% of term patients (P $<$	vaginal	
Sheffield, UK.	CSTI (Lactobacillus	0.0001). When the Laud and Dane	metabolites	
Asymptomatic	crispatus), CSTII	method was used, these data were	potentially	
(studied at 20–22,	(Lactobacillus	supported at 26–28 weeks, with the lack	associated	
n = 80; and 26-28	gasseri), CSTIII	of CSTII in the patients in the preterm	organisms.	
weeks, $n = 41$)	(Lactobacillus	group, $P = 0.03$. There was a trend		
and symptomatic	iners), CSTV	toward a higher proportion of CSTI in	Limitations:	
women (studied at	(Lactobacillus	the term women compared to their	They did not	
24-36 weeks, n =	jensenii); and mixed	preterm counterparts ($P = 0.06$). Using	study any	
37).	anaerobes—CSTIV.	both statistical methods, there appears	control group	
	This was then	to be a link between CSTI—L. crispatus	of low-risk	
	related to the vaginal	and L. gasseri and health.	women,	
Level of	metabolite profile		matched for	
Evidence: II	and pH determined	Conclusion: The data shows benefits of	gestation, with	
	by 1H-Nuclear	the presence of an L. crispatus/gasseri-	no symptoms	
Quality of	Magnetic Resonance	dominated microbiota (CSTI/II) over	of PTB.	
Evidence: A	spectroscopy and pH	other lactobacilli, particularly the		
	indicator paper.	potentially detrimental L. jensenii		
		(CSTV).	1	
Author Recommen	Author Recommendations: The findings do raise the possibility that further study of the CST			

Lactobacilli spp. is warranted. Summary for current clinical practice question: Important links between microbial community

state-types and targeted metabolite profiles in relation to PTB, highlight the potential functional and clinical significance of combining these determinations to

improve our understanding of the mechanisms of inflammation associated PTB.

Source: Stout, M., Zhou	Source: Stout, M., Zhou, Y., Wylie, K., Tarr, P., Macones, G. & Tuuli, M. (2017). Early pregnancy				
vaginal microbiome tren	ds and preterm birth. Americ	can Journal of Obstetrics &	Gynecology, 356, e1-		
e18. http://dx.doi.org/10	.1016/j.ajog.2017.05.030				
Purpose/Sample:	Designs	Results:	Strength/		
	(Methods/Instruments):		Limitations:		
Purpose: To	Nested case-control	Women who delivered	Strengths: The		
characterize vaginal	study within a	at term had a vaginal	cohort's high		
microbial community	prospective cohort study.	community richness and	proportion of preterm		
characteristics in a	Serial mid-vaginal swabs	Shannon diversity that	births adds to the		
large, predominantly	were obtained by	remained stable ($P = .14$	literature on the		
African American,	speculum exam at their	and $P = .07$), and	association between		
pregnant women and	routine prenatal visits.	Pielou's evenness	changes in the		
test whether particular	Sequencing of the V1V3	decreased modestly (P =	vaginal microbial		
vaginal microbial	region of the 16S rRNA	.04). In women who	community and		
community	gene was performed.	subsequently delivered	preterm birth. The		
characteristics are	Alpha diversity	preterm, richness (P <	high proportion of		
associated with the risk	community	.001), Shannon diversity	African American		
for subsequent preterm	characteristics were	(P < .001), and Pielou's	women is a unique		
birth.	compared longitudinally	evenness ($P < .001$)	and informative		
	in women who delivered	decreased significantly	feature of this studies		
Sample/Setting:	preterm to those who	over pregnancy.	analysis.		
Predominantly (77)	delivered at term.				
African American		Conclusion: In a	Limitations:		
pregnant women		predominantly African	Differences between		
receiving prenatal care		American population, a	groups reflect		
at a single tertiary care		significant decrease of	associations and are		
institution.		vaginal microbial	not necessarily		
Washington, U.S.		community richness and	causation. The		
		diversity is associated	sample size was too		
Level of Evidence: II		with preterm birth. The	small to allow for		
		timing of this	reliable statistical		
Quality of Evidence:		suppression appears	comparisons among		
A		early in pregnancy,	non-African		
		between the first and	American women.		
		second trimesters.	The study obtained		
			the tewest samples		
			from women in their		
	• mit 1		tirst trimester.		
Authors Recommendat	ions: This cohort study show	ws that a significant decreas	e in community		
richness and diversity an	d less stability of the vagina	I microbiome is associated	with preterm birth and		
is increased in African A	merican women. Future stu	dies should focus on the firs	st- to second-trimester		
microbial changes, well in advance of the outcome of interest.					

Summary for current clinical practice question: This study of predominantly African American pregnant women shows that a significant decrease in community richness and diversity and less stability of the vaginal microbiome is associated with their increased incidence of preterm birth. Future studies should focus on the first- to second-trimester microbial changes, well in advance of the outcome of interest.

Source: Tabatabaei, N., Eren, A., Barreiro, L., Yotova, V., Dumaine, A., Allard, C., & Fraser, W. (2018). Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. *An International Journal of Obstetrics and Gynaecology*, *126*(3), 1-11. https://doi.org/10.1111/1471-0528.15300

Purpose/Sample:	Designs	Results:	Strengths/
	(Methods		Limitations:
	Instruments):		
Purpose: To	Nested case-control	Two of the CSTs were most often	Strengths: Larger
explore	study in 3D cohort.	dominated by L. crispatus (CST	sample size than other
differences in the	Sequencing the V4	I) and L. iners (CST III).	studies. One of the
vaginal	region of the 16S	Communities that clustered in	strengths of the study is
microbiome	ribosomal RNA	CST IV-B lacked a substantial	the high power for
between preterm	(rRNA). Gene	number of Lactobacillus spp. and	detection of differences
and term	swabs self-	had higher relative abundance of	compared with previous
deliveries.	collected during	G. vaginalis, BVAB1, A. vaginae	studies.
	early pregnancy.	and Megasphaera spp. type 1.	
Sample/Setting:	Two vaginal swabs	Frequencies of CST I, CST III	Limitations:
Included	were self-collected	and CST IV-B in the entire	The V1-V3 region of
singleton	in first trimester.	sample set were 18.6%, 58.5%	the bacterial 16S rRNA
pregnant women	Nugent score was	and 22.9%, There were no	versus V4 is commonly
(n=2366)	used. DNA	differences in the frequency of	used to assess
recruited in nine	extraction of the	the different CSTs (CST I, III,	Lactobacillus
Quebec, Canada	vaginal swabs.	IV-B) between women who	community
hospitals.	Sequencing of	delivered at term and those who	composition. The V4
	barcoded 16S	delivered preterm (CST I: 18.4%	variable region of the
Level of	rRNA gene	versus 19.6%; CST III: 59.4%	16S rRNA gene
Evidence: II	amplicons.	versus 53.6%; CST IV-B: 22.2%	provides strong
	Bioinformatic	versus 26.8%).	discrimination between
Quality of	analyses.		most bacterial species.
Evidence: B	Clustering of	Conclusion: L. gasseri/L.	Additional
	bacterial	hohnsonii, L. crispatus/L.	computational methods
	communities into	acidophilus, L. iners IR	such as oligotyping
	community state	solanacearum and B. longum/B.	may be needed to
	types.	breve are associated with	precisely identify
		decreased risk of early but not	certain species, such as
		late spontaneous preterm birth.	L. crispatus. Selection
		High diversity of BV-associated	of the V4 region of 16S
		bacteria (G. vaginalis, A. vaginae	rRNA may limit the
		and Veillonellaceae bacterium) is	comparability of these
		associated with an increased risk	results to studies using
		of early but not late spontaneous.	other regions.
Authors Recomme	endations: Further stu	dies exploring the association betwee	en the vaginal
microbiome across pregnancy and risk of spontaneous preterm birth are recommended while			
considering the imr	nunology of the host.		
Summary for current clinical practice question: Bifidobacterium are mainly abundant in the			

Summary for current clinical practice question: Bifidobacterium are mainly abundant in the intestinal tract but are also detected in the vaginal tract. Meta-analyses have not observed any association between consumption of Bifidobacterium probiotics during pregnancy and gestational age. The observed protective association between Bifidobacterium and early preterm birth requires further research.

Source: Verstraelen, H., Verhelst, R., Claeys, G., DeBacker, E., Temmerman, M. & Vaneechouette, M. (2009). Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. *BMC Microbiology*, *9*(116), 1-10. doi:10.1186/1471-2180-9-116

Purpose/	Design	Results:	Strengths/
Sample:	(Methods/		Limitations:
	Instruments):		
Purpose: To	Prospective	Based on Gram stain, 77 women had normal	Strengths: As
determine to	cohort study. A	or Lactobacillus-dominated vaginal	the study was
what extent	cotton-tipped	microflora (VMF) during the first trimester,	confined to
individual	wooden vaginal	of which 18 had grade Ia (L. crispatus cell	genotypic
differences in	swab was rolled	morphotypes) VMF (23.4%), 16 grade Iab	characterization
vaginal	against the lateral	(L. crispatus and other Lactobacillus cell	of the
lactobacillus	vaginal walls, the	morphotypes) VMF (20.8%), and 43 grade	microflora, it
community	air-dried vaginal	Ib (non-L. crispatus cell morphotypes) VMF	remained to be
composition	smear was then	(55.8%). Thirteen women with normal VMF	determined
determine the	Gram-stained. A	at baseline, converted in the second or third	which
stability of	second, sterile	trimester (16.9%) to abnormal VMF defined	phenotypic
microflora.	cotton-tipped	as VMF dominated by non-Lactobacillus	attributes of the
	wooden swab	bacteria. Compared to grade Ia and grade Iab	different
Sample/Setting:	was rolled against	VMF, grade Ib VMF were 10 times (RR =	Lactobacillus
100 women.	the lateral vaginal	9.49, 95% CI 1.30 – 69.40) more likely to	species explain
Outpatient	walls and placed	convert from $= 0.009$). This was explained	the observed
obstetric clinic	in a sterile	by the observation that normal VMF	associations.
of the Ghent	polypropylene	comprising L. gasseri/iners incurred a ten-	
University	tube for transport.	fold increased risk of conversion to abnormal	Limitations:
Hospital.	A third swab was	VMF relative to non-L. gasseri/iners VMF	Sample size
Belgium.	obtained in a	(RR 10.41, 95% CI 1.39–78.12, p = 0.008),	was small. The
	similar manner	whereas normal VMF comprising L.	interval
Level of	and placed into	crispatus had a five-fold decreased risk of	between
Evidence: III	Amies transport	conversion to abnormal VMF relative to	subsequent
	medium for	non-L. crispatus VMF (RR 0.20, 95% CI	sampling
Quality of	anaerobic culture.	0.05-0.89, p = 0.04).	occasions was
Evidence: B	Gram-stained		rather large
	vaginal smears	Conclusion: The presence of different	with an average
	were categorized	Lactobacillus species within the normal	of some 3
	as grade I-IV.	vaginal microflora is a major determinant to	months interval
		the stability of this microflora in pregnancy.	time.

Author Recommendations: These observations showed a vast disease burden associated with depleted lactobacilli and bacterial vaginosis. Half of women actually have a microflora characterized by the poorer colonizers and defenders L. gasseri and L. iners. It may be inferred that in a substantial proportion of women lactobacilli-driven antimicrobial defense of the lower female genital tract is actually less optimal than can be assumed by the mere presence of lactobacilli.

Summary for current clinical practice question: L. crispatus is associated with a particularly stable vaginal ecosystem. Microflora comprising L. jensenii elicits intermediate stability, while VMF comprising L. gasseri/L. iners is the least stable.

Source: Walther-Antonio, M., Jeraldo, P., Miller, M., Yeoman, C., Nelson, K., Wilson, B., White, G., Chia, W., & Creedon, D. (2014). Pregnancy's stronghold on the vaginal microbiome. *PLOS ONE*, *9*(6), 1-10.

Purpose/	Design	Results:	Strengths/	
Sample:	(Methods/		Limitations:	
	Instruments):			
Purpose: To assess	Prospective cohort	Two species dominated the microbial	Strengths:	
the vaginal	study. Vaginal	content (.1% representation) of	Some technical	
microbiome	swabs were	samples from the entire cohort. The	challenges were	
throughout full-term	obtained from	identified species were L.	present in the	
uncomplicated	twelve pregnant	crispatus and L. iners. Among the 12	study, but	
pregnancy.	women at 8-week	patients there were 3 profiles	important	
	intervals	that could be distinguished. Eight of	conclusions	
Sample/Setting: 12	throughout their	the subjects showed	could be	
subjects enrolled at	uncomplicated	a high prevalence (.90%) of L.	inferred from	
the Obstetric	pregnancies. Swabs	crispatus throughout pregnancy.	the results.	
Division, Mayo	were obtained from	Two of the subjects showed a		
Clinic, Rochester,	the posterior fornix	prevalence of L. iners (92–61%); and	Limitations:	
MN. Caucasian and	and cervix at 8–12,	the remaining 2 subjects showed a	Small sample	
AA women.	17–21, 27–31, and	transition in dominance after the first	size and	
	36–38 weeks of	trimester of gestation from L.	homogeneous	
Level of Evidence:	gestation. The	crispatus (70%) to L. iners (52–57%).	population.	
III	microbial		Larger number	
	community was	Conclusion: Normal pregnancy is	of Caucasian	
Quality of	profiled using	characterized by a microbiome that	women were in	
Evidence: B	hypervariable tag	has low diversity and high stability.	the study than	
	sequencing of the	Lactobacillus species strongly	AA women.	
	V3–V5 region of	dominate the vaginal environment	Differences in	
	the 16S rRNA	during pregnancy across the two	hypervariable	
	gene, producing	studied ethnicities, observed	16S rRNA	
	approximately 8	differences between the longitudinal	regions	
	million reads on the	dynamics of the analyzed populations	amplified (V1-	
	Illumina MiSeq.	may contribute to divergent risk for	V2 in Romero's	
	Principal	pregnancy complications. This helps	dataset and V3-	
	component analysis	establish a baseline for investigating	V5 in our study)	
	(PCA) was used.	the role of the microbiome in	and sequencing	
	Shannon's diversity	complications of pregnancy such as	platforms used.	
	was used.	preterm labor and preterm delivery.		
Author Recommenda	Author Recommendations: Examination of the microbial community dynamics using principal			

Author Recommendations: Examination of the microbial community dynamics using principal coordinate analysis reveals that Caucasian women cluster by trimester towards a common attractor, suggesting that these subjects share a common microbiome dynamic. On the other hand, African American women cluster by subject and do not show a common attractor.

Summary for current clinical practice question: Speculation is made that these differences in microbial dynamics may underlie the increased risk of pregnancy complications in particular individuals in the African American population. Due to the multitude of other factors that may also vary across these two populations, it is difficult to isolate the cause. Further research is indicated.

Source: Wen, A., Srinivasan, U., Goldberg, D., Owen, J., Marrs, C., Misra, D., Wing, D., Ponnaluvi, S., Miles-Jay, A., Bucholz, B., Abbas, K. & Foxman, B. (2013). Selected vaginal bacteria and risk of preterm birth: An ecological perspective. *The Journal of Infectious Diseases, 209*, 1087-1094. doi://10.1093/infdis/jit632

Purpose/	Design	Results:	Strengths/	
Sample:	(Methods/		Limitations:	
•	Instruments):			
Purpose: The study	Nested case	African American participants had	Strengths: This	
examined the	control within a	BMI that was significantly	study, consistent	
community ecology of	prospective	correlated	with recent studies	
vaginal microbial	study. Cervical	with the microbial community.	on racial/ethnic	
samples taken from	length	Following subtraction of the effect	groups and	
pregnant women with	evaluation	of all the constraining factors, the	bacterial	
previous preterm birth	between 16	correlation ($P = .005$) between	communities,	
experience to	weeks 0 days to	microbial community and birth	reiterates that	
investigate whether	21 weeks 6 days	outcome persisted. An odds ratio	including diverse	
targeted pathogenic and	gestation. Sterile	(OR) analysis showed that the	populations of	
commensal bacteria are	speculum	presence of Mycoplasma	pregnant women	
related to risk of	examination was	significantly increases	is critical for	
preterm birth in the	performed to	the chance of preterm birth ($OR =$	understanding the	
current pregnancy.	collect	5.70 [2.40, 14.4], P < .001)	etiology of	
	vaginal fluid	whereas BVAB3 drastically	infection-	
Sample/Setting: 374	from the upper	decreases the risk of preterm birth	associated preterm	
pregnant women	one-third of the	$(OR = 0.13 [0.036, 0.38], P \le .001).$	birth, because the	
carrying a singleton	vaginal	Among Hispanic participants	microbial	
gestation and who had	sidewalls	results of the CCA II showed that	community	
at least one prior	for pH and	Mycoplasma is still strongly	exhibited strong	
spontaneous preterm	Gram stain.	correlated with preterm birth.	structural	
birth between 17- and	Bacterial DNA	(OR =4.45 [1.69, 11.97], P < .01),	differences among	
33-weeks' gestation.	was extracted	but the negative association with	racial/ethnic	
Obstetrical clinics,	from the Gram	BVAB3 was only marginally	groups.	
Birmingham, Alabama.	stain slides.	significant, although the association		
	Preamplification	was in the same direction (OR =	Limitations: They	
Level of Evidence: I	with 8F1492R	0.19 [0.0076,1.01], P = .068).	could only study	
	was used,		the association of	
Quality of Evidence:	universal	Conclusion: Vaginal bacterial	specific bacteria	
Α	bacterial primers	community in the second trimester	and preterm birth.	
	based on 16S	was correlated with birth outcome,		
	rDNA was used.	with the correlation being		
		dependent upon the race/ethnicity		
		of the mother.		
Author Recommendation	ons: The discovery	of an apparent negative association betw	ween	
BVAB3 and PTB was un	BVAB3 and PTB was unexpected and needs further evaluation. Its			
effect in preterm birth had not been evaluated in published literature previous to this study.				

Summary for current clinical practice question: Findings from this study affirm the necessity of considering women's race/ethnicity when evaluating the correlation between vaginal bacteria and preterm birth. The study also illustrates the importance of studying the vaginal microbiota from an ecological perspective and demonstrates the power of ecological community analysis to improve understanding of infectious disease.

eukaryotic DNA virome and preterm birth. American Journal of Obstetrics & Gynecology, 189, e1-				
e12. <u>https://doi.org/10.1016/j.ajog.2018.04.048</u>				
Purpose/	Designs	Results:	Strengths/	
Sample:	(Methods/		Limitations:	
	Instruments):			
Purpose: To examine	A nested case-	24 patients delivered	Strengths: The ability	
associations between	control study	preterm. Participants were	to integrate bacterial	
vaginal community	within a	predominantly African	community	
characteristics and	prospective	American (65%). Six	characteristics with	
preterm birth.	longitudinal	families of eukaryotic DNA	viral community	
	cohort. Three	viruses were detected in the	characteristics in the	
Sample/Setting: 60	swabs of vaginal	vaginal samples. At least 1	same pregnant patients.	
pregnant women	secretions were	virus was detected in 80% of	Majority African	
receiving prenatal care	taken from the	women. No specific virus or	American population,	
at a single tertiary care	posterior wall of	group of viruses was	allowing for analysis of	
center. Washington,	the vaginal fornix	associated with preterm	the full cohort as well	
U.S.	at an outpatient	delivery. Higher viral	as the subgroup of	
	service. Two of	richness was significantly	African American	
Level of Evidence: III	the swabs were	associated with preterm	patients.	
	applied onto a	delivery in the full group	_	
Quality of Evidence:	slide for	and in the African American	Limitations: Fewest	
Α	determination of	subgroup ($P = .0005$ and $P =$	number of swabs from	
	vaginal pH and	.0003, respectively). Having	this time point. DNA	
	vaginal infection	both high bacterial diversity	sequencing detects viral	
	status. The	and high viral diversity in	genomes but does not	
	remaining vaginal	the first trimester was	distinguish viral	
	swab was covered,	associated with the highest	exposure from active	
	placed on ice, and	risk for preterm birth.	replication.	
	used for bacterial			
	genomic DNA	Conclusion: Higher vaginal		
	extraction.	viral diversity is associated		
	Cleanliness was	with preterm birth. Changes		
	graded I-IV. The	in vaginal virome diversity		
	use of ViroCap	appear similar to changes in		
	targeted sequence.	the vaginal bacterial		
		microbiome over pregnancy.		
A 41 D	T1 (1)	1 1114 11 11 1 1	1 • • 1 1 • •	

Source: Wylie, K., Wylie, T., Cahill, A., Macones, G., Tuuli, M., & Stout, M. (2018). The vaginal

Author Recommendations: The study raises the possibility that the physiology driving the changes in the vaginal communities over pregnancy may impact both bacterial and viral communities similarly, a hypothesis that could be tested in future studies. The first trimester appears to have the highest magnitude of difference in viral diversity between term and preterm birth patients. The first trimester time point could be clinically useful to identify women at risk or not at risk for preterm birth and allow enough lead time to individualize surveillance and treatment plans.

Summary for current clinical practice question: The findings of this and other studies suggest the interplay between bacteria and eukaryotic DNA viruses is important. The interplay of bacterial and viral communities and maternal inflammation may be a mechanism by which preterm birth is triggered. These microbial community features may not be causal but instead be potential biomarkers of a common underlying physiology in women at risk for preterm birth

Source. Zneng, N., Ol	Source: Zheng, N., Ouo, K., Yao, Y., Jin, M., Cheng, Y. & Ling, Z. (2019). Lactobachius iners is			
associated with vagina	a dysbiosis in health	y pregnant women: A preliminary study. <i>Bio</i>	Mea Kesearch	
International, 2019, 1-9. https://doi.org/10.1155/2019/60/9734				
Purpose/	Designs	Results:	Strengths/	
Sample:	(Methods/		Limitations:	
	Instruments):			
Purpose: To	Cross-sectional	Seven known abundant genera	Strengths:	
investigate the	cohort study.	(Lactobacillus, Gardnerella, Atopobium,	The	
vaginal microbiota in	Three swabs of	Megasphaera, Eggerthella,	Lactobacillus	
the first, second, and	vaginal	Leptotrichia/Sneathia, and Prevotella)	species, such	
third pregnancy	secretions were	were analyzed. The abundance of	as L. iners and	
trimester in healthy	taken from the	Gardnerella, Atopobium, Megasphaera,	L. crispatus,	
pregnant women	posterior wall of	Eggerthella, Leptotrichia/Sneathia, and	maintained the	
using a cultivation-	the vaginal	Prevotella was significantly different	balance of the	
independent	fornix at an	among the three trimesters ($p > 0.05$). The	vaginal	
approach that may	outpatient	genus Lactobacillus constituted the major	ecosystem.	
help to prevent	service. Two of	proportion of the vaginal microbiota in		
vaginal infections	the swabs were	healthy pregnant women. L. jensenii, L.	Limitations:	
during pregnancy	applied onto a	iners, and L. crispatus were the most	The limitation	
and reduce preterm	slide for	frequent species. Among them, the	of this study is	
delivery and PROM.	determination of	abundance of L. iners and L. crispatus	small sample	
	vaginal pH and	was significantly different among the	capacity and	
Sample/Setting: 83	vaginal infection	trimesters. It was found that L. iners	non-	
healthy pregnant	status. The	decreased significantly in women in the	longitudinal	
women. Department	remaining	second and third trimester when	design.	
of Obstetrics of	vaginal swab	compared with women in the first	Number of	
Tongde Hospital in	was covered,	trimester ($p < 0.001$), while L. crispatus	PTB not	
Zhejiang Province	placed on ice,	significantly increased in the second	listed.	
(Zhejiang, China).	and used for	trimester (p=0.030).		
	bacterial			
Level of Evidence: I	genomic DNA	Conclusion: L. iners was found to be		
	extraction.	significantly decreased in the second and		
Quality of	Cleanliness was	third trimester compared with the first		
Evidence:	graded I-IV.	trimester, while L. crispatus increased		
В	qRT-PCR was	only in the second trimester. It was found		
	used. N=33 first	that L. iners may be highly associated		
	trimester, N=24	with vaginal dysbiosis.		
	second trimester,			
	N=26 third			
	trimester.			
Authors Recommendations: The depletion of lactobacilli together with the increase of different				

Source: Zheng N. Guo R. Vao V. Jin M. Cheng V. & Ling Z. (2019) Lactobacillus iners is

species of anaerobes, could result in the switch from normal to a dysbiosis vaginal microbiota, which contributes to various adverse outcomes.

Summary for current clinical practice question: The findings could have important implication when interpreting the varied results of investigations aimed at improving pregnancy outcomes. These data support the observation that the prevalence of vaginal microbiota varies significantly over the course of pregnancy, with a strong trend towards a reduction in infection by the third trimester.