Bethel University

Spark

All Electronic Theses and Dissertations

2019

Level of Postoperative Pain as it Relates to Patients Undergoing Robotic and Open Thyroidectomy Surgery

Lucinda E. Zeilinger Bethel University

Follow this and additional works at: https://spark.bethel.edu/etd

Part of the Nursing Commons

Recommended Citation

Zeilinger, L. E. (2019). Level of Postoperative Pain as it Relates to Patients Undergoing Robotic and Open Thyroidectomy Surgery [Master's thesis, Bethel University]. Spark Repository. https://spark.bethel.edu/ etd/676

This Master's thesis is brought to you for free and open access by Spark. It has been accepted for inclusion in All Electronic Theses and Dissertations by an authorized administrator of Spark.

LEVEL OF POSTOPERATIVE PAIN AS IT RELATES TO PATIENTS UNDERGOING ROBOTIC AND OPEN THYROIDECTOMY SURGERY

A MASTER'S CAPSTONE PROJECT SUBMITTED TO THE GRADUATE FACULTY OF THE GRADUATE SCHOOL BETHEL UNIVERSITY

BY

LUCINDA E. ZEILINGER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

APRIL 2019

MASTER OF SCIENCE IN NURSING

LEVEL OF POSTOPERATIVE PAIN AS IT RELATES TO PATIENTS UNDERGOING ROBOTIC AND OPEN THYROIDECTOMY SURGERY

LUCINDA E. ZEILINGER

APRIL 2019

Approvals:

Project Advisor: Tim Bredow RN, PhD. NP-C

Project Advisor Signature: 1- Budow RN PhD, NP-C.

Dean/Chief Nursing Administrator: Diane Dahl RN., PhD.

Dean/Chief Nursing Administrator Signature: Diane Dave RU, PWD

Director of Nurse Educator Program: Krista Hockstra RN, PhD.

Director of Nurse Educator Program Signature: Way March EdO RN

Abstract

Background: With the growing popularity of robotic surgery, more research should be performed to compare the outcomes with the conventional, open approaches. In particular, comparison of postoperative pain is needed as it has significant implications for nursing practice.

Purpose: The purpose of this critical review of the literature is to examine evidence on postoperative pain scores between the robotic thyroidectomy and the open approach.

Results: Eighteen articles were identified for review and were analyzed using the Johns Hopkins Nursing Evidence-Based Practice Research Evidence Appraisal tool (Dang & Dearholt, 2018). The literature revealed no significant differences in postoperative pain and discomfort between the robotic and open thyroidectomy groups. Using Margaret Dossey's Theory of Integral Nursing (Tracy & DiNapoli, 2012), the nurse is encouraged to create a healing environment while developing a personalized pain management plan of care for the individual patient based on knowledge of the different surgical approaches (p.32).

Conclusion: The literature review revealed very similar postoperative pain and discomfort between patients undergoing the robotic thyroidectomy and the conventional, open approach. The studies also maintain the robotic thyroidectomy as an acceptable, alternative method for the open thyroidectomy.

Implications for Research and Practice: Recommendations for nursing research include a literature review and analysis of major findings on pain management interventions and analysis regimens specific to thyroid surgery. As technology advances and surgical approaches continue

to evolve, the Theory of Integral Nursing will guide the nurse in recognizing each patient as an individual with his or her own distinctive pain experience, while developing effective pain management interventions (Tracy & DiNapoli, 2012).

Keywords: robotic thyroidectomy, open thyroidectomy, postoperative pain

Table of Contents

Abstract	3
List of Tables.	7
Chapter One: Introduction	8
Purpose	8
Need for Critical Review and Significance to Nursing	9
Theoretical Framework	9
Summary	11
Chapter Two: Methods	12
Search Strategies.	12
Inclusion and Exclusion Criteria.	12
Number and Types of Articles.	13
Criteria for Evaluating the Studies.	14
Summary	14
Chapter Three: Literature Review and Analysis	15
Synthesis of Major Findings	15
Strengths and Weaknesses	17

Summary	18
Chapter Four: Discussion, Implications, and Conclusions	19
Answer to the Practice Question	19
Trends and Gaps.	19
Implications for Nursing Practice	20
Recommendations	21
Integration of the Theoretical Framework	21
Summary	22
References	23
Appendix A: Evidence Synthesis Matrix	28

_				
	ict	Λť ′	1'al	bles
	/131	.,,	1	,,,

Table 1:	: Table of Level and Quality of the Included Articles	13
	` ,	

Chapter One: Introduction

The conventional, open approach for the thyroidectomy is considered the traditional method for surgical removal of all or part of the thyroid gland (Fregoli et al., 2017). This approach requires the surgeon to make an anterior incision in the center of the neck. Even though it is well-tolerated and considered a very safe surgical method with patients experiencing a low level of pain and a short hospital stay afterward, it results in a visible, permanent neck scar, which has demonstrated to be cosmetically concerning for some individuals. Introduced in 2007 in Korea, the robotic-assisted thyroidectomy is a surgical approach that uses the assistance of the da Vinci robot to reach the thyroid gland through several small incisions in the underarm and chest area (Lee et al., 2010). Three-dimensional vision with magnification along with computercontrolled movement, allows the robot to use wrist-articulated instruments to operate in small spaces, increasing the operating capacity (Fregoli et al., 2017). While the robotic approach has become available to patients as a treatment option, examination is needed as skepticism still remains concerning the effectiveness and favorability of the outcomes over the traditional, open approach. The focus of this practice question is: Is there a difference in the level of pain among patients who undergo the robotic thyroidectomy versus those who undergo the conventional, open approach?

Purpose

Song et al. (2015) describes the robotic approach as gaining increasing popularity, as it is cosmetically more appealing, and in contrast to the open approach, only leaves several concealable scars under the arm. Despite the fact that the robotic thyroidectomy has been

reported to be safe with many surgical advantages over the open approach and greater patient satisfaction, the wider dissection plane, requiring tunneling from the axilla through the anterior chest to the neck area, leaves the postoperative pain experience still questionable. The longer operating time of the robotic thyroidectomy, along with the debatable invasiveness and fear of severe postoperative pain results in many surgeons still unwilling to perform the robotic approach (Song et al., 2015).

Need for Critical Review and Significance to Nursing

Numerous research studies since 2008 have reported the robotic thyroidectomy is as effective as the conventional, open approach for thyroid surgery, but according to Song et al. (2015), clear evidence of the pain experience is still lacking, and real benefit has not been identified. The robotic thyroidectomy is not minimally invasive, leading to uncertainty of the actual advantage over the open approach. Amongst the controversy, no definitive indication for the robotic thyroidectomy has been reached (Song et al., 2015). The evidence and knowledge of this topic is critical information for patients when considering the two approaches, as well as for nurses when choosing appropriate pain-relieving strategies during the intraoperative and postoperative periods. Inadequate knowledge of the differing approaches to thyroid surgery and the associated impact on the patient, reduces the nurse's ability to effectively manage pain and promote healing (Tracy & DiNapoli, 2012).

Theoretical Framework

Tracy and DiNapoli (2012) relate that pain is a familiar symptom among patients and, undoubtedly, common after any surgery. Subjective and different for every patient and

experience, pain continues to be a difficult phenomenon for nurses to understand, and adequately manage. Margaret Dossey's Theory of Integral Nursing (Tracy & DiNapoli, 2012) serves as a guide to pain management and clinical practice by utilizing a nurse-patient relationship approach, which surpasses objective and subjective data. It focuses on healing and wholism, successfully intervening in the patient's pain experience. Dossey's theory is based on the belief that there are four dimensions of reality within pain management that are all linked to each other and need to be thoroughly addressed: personal, physiological, shared/cultural, and systems/structures. The Theory of Integral Nursing couples with the well-known meta-paradigm of nursing (person, environment, health, and nursing), to identify the interrelated, continuous circle of relationships between the four dimensions that are needed for wellness and healing. Integral Nursing urges the nurse to develop a healing environment and wholistic plan of care, based on the four concepts of nursing and four dimensions of reality. This theory creates the opportunity for the nurse to recognize his or her patient as an individual who has their own distinctive pain experience, allowing the nurse to create a wholistic personalized plan of pain relief. Dossey's theory is especially applicable to the differing approaches to thyroid surgery. It is necessary for the nurse to have a knowledge base of each surgical approach and personal desire to modify his or her practice as needed, in order to develop and implement an individualized pain management plan of care (Tracy & DiNapoli, 2012). This theory challenges the nurse to advance pain management, replacing the "habitual, task-driven ways of managing care" with patient-and relationship-centered, self-directed nursing interventions (Tracy & DiNapoli, 2012, p. 32).

Summary

In this chapter, the background and purpose of the critical review of literature was described. The focus of the practice question was introduced. The significance to nursing was discussed and a theoretical framework for this review was identified.

Chapter Two: Methods

The second chapter describes the critical review of literature to examine evidence related to postoperative pain scores between the robotic thyroidectomy and the open approach. Search strategies, inclusion and exclusion criteria, and types of articles are discussed. Finally, the criteria used to evaluate each article is explained.

Search Strategies

To gather evidence on the postoperative pain experiences after the robotic thyroidectomy versus the conventional thyroidectomy, a literature search was conducted using the CINAHL, PubMed, Medline, and Science Direct databases. Keywords used were "robotic thyroidectomy", "pain", "discomfort", "open thyroidectomy", and "postoperative complications". The range of years was 2010 to present.

Inclusion and Exclusion Criteria

Eligibility for articles selected included ones comparing the robotic thyroidectomy with the open thyroidectomy. The idiom 'robotic thyroidectomy' included axillo-bilateral breast approach, bilateral axillo-breast approach, and trans-axillary approach. Articles detailing specific outcomes, such as postoperative pain, sensory disturbance and discomfort, operating time, and length of hospital stay were selected. A variety of studies were sought, which included randomized control trials, quasi-experimental studies, review articles, and articles reporting the measure of variance. Articles detailing the transoral thyroidectomy, robotic neck dissection, or robotic neck cosmetic procedures were excluded from selection. Of the 18 articles identified, 11

were quasi-experimental studies, three were experimental, and four were systematic reviews.

The studies used self-reporting as the method and either a Visual Analog Scale or questionnaire as the instrument to measure pain scores; two of the systematic reviews did not specify a method or instrument. Pain and discomfort were measured at varying postoperative times and days.

Number and Types of Articles

Eighteen articles were identified meeting inclusion criteria. The selection of articles was reviewed using the Johns Hopkins Nursing Evidence-Based Practice Research Evidence

Appraisal tool (Dang & Dearholt, 2018) and the level of evidence was assigned to each. The 11 quasi-experimental studies were rated as Level II and good quality. The three experimental studies were randomized control trials (RCT's), rated as Level I, and high quality. The remaining systematic reviews were a combination of RCT's, quasi-experimental, and non-experimental, three of which were with meta-analysis. These articles were rated a Level II or III and good quality. See Table 1 for the level and quality of the included articles in this review.

Table 1: Table of Level and Quality of the Included Articles

Level of Evidence	Number of Articles	Quality A	Quality B
Level I	3	3	
Level II	12		12
Level III	3		3
Total	18		

Criteria for Evaluating the Studies

All articles were reviewed using the Johns Hopkins Nursing Evidence-Based Practice Research Evidence Appraisal tool (Dang & Dearholt, 2018). The quality of each article was determined using the Johns Hopkins Nursing Evidence-Based Practice Research Evidence Appraisal tool (Dang & Dearholt, 2018), and evidence, ratings, and quality were placed in a matrix for access. The 11 quasi-experimental studies were rated as Level II with good quality because of selection bias and ethical issues, barring an RCT to be feasible. Recommendations were consistent. The three experimental studies were rated as Level I because they were strong, randomized studies that supported the practice question with control. The systematic reviews were rated a Level II or III because of only some control, across a widespread literature review that proved consistent results (Dang & Dearholt, 2018).

Summary

In this chapter, the search strategies were described. The inclusion and exclusion criteria were identified. The types of articles and the review process for level of evidence and quality were defined.

Chapter Three: Literature Review and Analysis

The third chapter describes the major findings of the literature review, organized by level of evidence according to the Johns Hopkins Nursing Evidence-Based Practice Research Evidence Appraisal tool (Dang & Dearholt, 2018). Strengths and weaknesses of the studies are discussed. Finally, the matrix (see Appendix A) summarizes the research articles.

Synthesis of Major Findings

Level I Evidence: Yoo et al. (2013), in a prospective, randomized double-blind study of 170 women undergoing conventional open thyroidectomy (n = 85) and robotic-assisted thyroidectomy (n = 85), revealed decreased mean pain scores in the robotic group during the 6-24-hour postoperative period ($2.8 \pm 1.8 \text{ vs } 3.8 \pm 1.8, P = <0.05$). They noted an increased anesthesia time and operating time in the robot group. He et al. (2016) studied one-hundred patients randomly assigned to the robotic group (n = 50) and conventional open group (n = 50), where decreased postoperative pain scores were also reported in the robotic group (n = 50), where decreased postoperative pain scores were also reported in the robotic group (n = 50). The robotic group experienced increased operating time. Kim et al.'s (2016) double-blind study, where 112 robotic and 117 open group patients were selected through block randomization, concluded no significant difference in postoperative pain scores (n = 50) and n = 50 are specified in the robotic group (n = 50).

Level II Evidence: Paek et al. (2016) reported significantly higher pain scores after open thyroidectomy (P = 0.048). In Song et al.'s (2015) quasi-experimental study, postoperative pain scores were similar between the robotic group (n = 123) and open group (n = 170), except for a higher pain score at one-week post-surgery in the robotic group (P = 0.057). Lee et al. (2010)

found the robotic thyroidectomy resulted in lower postoperative discomfort. In the quasiexperimental study by Aliyev et al. (2012), pain scores were similar on postoperative day one $(2.7 \pm 0.4 \text{ vs } 3.1 \pm 0.6; P = .573)$, but significantly lower in the open group versus the robotic group $(0.4 \pm 0.3 \text{ vs } 2.4 \pm 0.5; P = .001)$ on postoperative day 14.

Lee et al. (2013) concluded no significant differences in neck pain scores among robotic and open groups (P = .3587). In the quasi-experimental study by Cho et al. (2016), no significant differences were also reported between the two groups (P = 0.669). Fregoli et al. (2017) noted low pain scores during the entire postoperative period in their study, and any differences between the two groups were declared clinically irrelevant. Arora et al (2016) completed a study which also revealed similar postoperative pain scores, except for one isolated difference at three months, where the robotic group reported a lower pain score (P = 0.05).

In the quasi-experimental study by Chai et al. (2016), postoperative pain scores for the throat, neck, and back were not significantly different between the robotic group and open group. Of note, pain scores for the chest were considerable in the robotic group (absent for the open group), but decreased to minimal levels at postoperative day 14. Song et al. (2014) studied 118 robotic patients and 176 conventional open patients. Postoperative neck discomfort scores were increased immediately after surgery, but the scores did not differ between the groups from one day to 18 months. Postoperative chest discomfort was significantly increased in the robotic group from one day to 12 months. At 18 months there was no significant difference. Ha et al. (2018) reported significantly higher postoperative neck pain in the robotic group (P = 0.026). In the systematic review with meta-analysis by Sun, Peress, and Pynnonen (2014), no significant

differences in postoperative neck pain scores were noted, although the robotic group reported increased chest pain scores which later resolved.

Level III Evidence: Kandil et al. (2015) conducted a meta-analysis which noted decreased postoperative pain in the robotic group after 24 hours. Lang et al. (2014) also completed a meta-analysis and systematic review. Similar pain scores were reported, while chest paresthesia was significantly worse in the robotic group before returning to normal at three months postoperative. Adam et al. (2014) reviewed all thyroid cancer patients more than 18 years of age who had robotic or open thyroid surgery in 2010 or 2011 in the United States. This review detailed increased chest paresthesia in the robotic group.

Strengths and Weaknesses

The findings from many of the research studies describe longer operating times and wider dissection plane in the robotic group, yet no significant differences in postoperative pain and discomfort between the groups. One of the studies supporting this conclusion was a high quality, randomized controlled trial (RCT) with a large sample size and consistent results. In this study, Kim et al. (2016) concluded the robotic thyroidectomy is an acceptable, alternative method for the open thyroidectomy, yielding comparable postoperative pain scores. The other studies supporting this conclusion are of good or high-quality evidence according to the Johns Hopkins Nursing Evidence-Based Practice Research Evidence Appraisal tool (Dang & Dearholt, 2018).

Weaknesses were identified in the research studies. Only three of the studies were RCTs, as randomized control studies for this subject are difficult to implement. Surgical cost and patient preference undoubtedly introduced self-selection bias. Some of the studies had small

sample sizes and short follow-up periods. Many of the studies were performed outside the United States, raising the question of whether medical systems or surgeons' learning experiences between countries may impact different patient outcomes. Finally, evaluation of postoperative pain was measured subjectively with varying versions of the Visual Analogue Scale, leading to potential bias in self-reported data.

Summary

The critical review of literature included 18 research articles. In this chapter, evidence on postoperative pain scores between robotic and open thyroid groups was reviewed. The matrix (see Appendix A) summarizes the research articles. Each research article was organized by source, purpose, quality level, sample, design, results, conclusion, author recommendations, and implications. The synthesis of major findings was examined according to the Johns Hopkins Nursing Evidence-Based Practice Research Evidence Appraisal tool (Dang & Dearholt, 2018). Strengths and weakness in the research studies were discussed.

Chapter Four: Discussion, Implications, and Conclusions

The fourth chapter answers the practice question and describes trends and gaps in literature. Implications for nursing practice and recommendations for nursing research are explained. Finally, integration of Margaret Dossey's Theory of Integral Nursing (Tracy & DiNapoli, 2012) is presented.

Answer to the Practice Question

The research articles reviewed reveal very similar postoperative pain and discomfort between patients undergoing the robotic thyroidectomy and the conventional, open approach. Several studies did identify higher pain levels in one or group or another, but based on the critical review of literature, the conclusion is supported that there are no significant differences in postoperative pain and discomfort between the robotic and open groups. The studies also maintain the robotic thyroidectomy as an acceptable, alternative method for the open thyroidectomy, yielding comparable postoperative pain scores.

Trends and Gaps

One of the trends in literature is the frequent and repeated grading of postoperative pain, from varying hours, days, months, and years. Although this is an imperative element of the research study, it is difficult to equivalently compare pain scores among the two groups without uniform follow-up time periods. The chosen time periods seem to be facility specific.

One of the gaps in literature is a mutually agreed upon instrument to subjectively measure postoperative pain levels. The articles reviewed employed varying versions of the Visual

Analogue Scale (VAS), questionnaires, or surveys as the method of self-report. The chosen instruments may be facility-specific, or perhaps, cultural.

Implications for Nursing Practice

Pain and pain management are worrisome subjects for both the patient and the nurse, and also remain the most frequent reason for nursing intervention (Tracy & DiNapoli, 2012). For effective and efficient intraoperative and postoperative pain management, nurses must understand the differing approaches to thyroid surgery and the subsequent impact on the patient. Evidence in this critical review on postoperative pain scores between robotic and open thyroid surgeries support the nurse in treatment of pain with the purpose of developing effective and appropriate pain management interventions and practice.

Bucknall, T., Manias, E., and Botti, M. (2001) describe several necessary components to effective pain management. First, the nurse must involve the patient in decision-making and development of an individualized pain management plan. Then, the nurse must accurately assess both objective and subjective indicators of pain. Third, successful collaboration of the health-care team is needed, in order to improve communication and accountability, resulting in more effective pain management for the patient. Next, identifying and addressing organizational management factors, such as staff availability, will encourage the patient to speak up about pain concerns. Beyond organizational management, education is another component of effective pain management. Here, increased education on pharmacology and non-pharmacological interventions, as well as attitudes and beliefs, are stressed. Lack of understanding or fear of overdosing, for example, can significantly impact the nurses' attitudes or beliefs towards pain

relief interventions. Knowledge of pain management goals, pain relief options, and pain assessments are equally important areas to increase education in during the postoperative period. Evaluation of pain management relief and interventions is the final component (p. 270). Utilizing these key components in nursing practice and pain management will ensure individualized, effective, and patient-centered care (Bucknall, T., Manias, E., & Botti, M., 2001).

Recommendations

Recommendations for nursing research include a literature review and analysis of major findings on complications and infection rates between robotic and open thyroid surgeries. This additional evidence would be meaningful to nursing practice, as well as preoperative counselling and standardized postoperative care protocols. Secondly, future research to determine the most effective and appropriate pain management interventions and analgesic regimens specific to thyroid surgery would be advantageous, as pain management remains problematic for both the patient and the nurse.

Integration of Theoretical Framework

Margaret Dossey's Theory of Integral Nursing (Tracy & DiNapoli, 2012) combines the four dimensions of reality within pain management (personal, physiological, shared/cultural, and systems/structure) with the meta-paradigm of nursing (person, environment, health, and nursing) to establish patient-centered care and healing. Patients undergoing similar surgeries may experience very different levels of pain. Integral Nursing recognizes each patient as an individual with his or her own distinctive pain experience. This theory guides the nurse in creating a wholesome, healing environment while encouraging the development of a uniquely,

personalized plan of care and pain relief for each individual patient. Dossey's theory is particularly applicable to thyroid surgery. It is necessary for the nurse to relate his or her knowledge of the differing surgical approaches of thyroid surgery to focus on the patient and implement an individualized pain management plan of care. In the words of Tracy and DiNapoli (2012), "the theory of integral nursing holds much promise, and it is up to us to apply it in practice as we refocus the humanity of nursing care in this technological age" (p.32).

Summary

In this chapter, the practice question was answered. The critical review of literature supported the robotic thyroidectomy as an acceptable, alternative method for the open thyroidectomy. Recommendations for future nursing research and implications for nursing practice were discussed.

References

- Adam, M.A., Speicher, P., Pura, J., Dinan, M., Reed, S.D., Roman, S.A., & Sosa, J.A. (2014).

 Robotic thyroidectomy for cancer in the US: Patterns of use and short-term outcomes. *Annals of Surgical Oncology, 21* (12), 3859-3864. doi:10.1245/s10434-014-3838-8
- Aliyev, S., Taskin, H.E., Agcaoglu, O., Aksoy, E., Milas, M., Siperstein, A., & Berber, E. (2012). Robotic transaxillary total thyroidectomy through a single axillary incision. *Surgery*, *153* (5), 705-710. doi:10.1016/j.surg.2012.10.013
- Arora, A., Garas, G., Sharma, S., Muthuswamy, K., Budge, J., Palazzo, F., Darzi, A., & Tolley,
 N. (2016). Comparing transaxillary robotic thyroidectomy with conventional surgery in
 a UK population: A case control study. *International Journal of Surgery*, 27, 110-117.
 doi:10.1016/j.ijsu.2016.01.071
- Bucknall, T., Manias, E., & Botti, M. (2001). Acute pain management: Implications of scientific evidence for nursing practice in the postoperative context. *International Journal of Nursing Practice*, 7, 266-273. doi:10.1046/j.1440-172x.2001.00309.x
- Chai, Y. J., Song, J., Kang, J., Woo, J., Song, R., Kwon, H., Kim, S., Choi, J. Y., & Lee, K. E. (2016). A comparative study of postoperative pain for open thyroidectomy versus bilateral axillo- breast approach robotic thyroidectomy using a self- reporting application for iPad. *Annals of Surgical Treatment and Research*, 90 (5), 239-245. doi:10.4174/astr.2016.90.5.239

- Cho, J.N, Park, W.S., Min, S.Y., Han, S., & Song, J. (2016). Surgical outcomes of robotic thyroidectomy vs. conventional open thyroidectomy for papillary thyroid carcinoma. World Journal of Surgical Oncology, 14 (181), 1-7. doi:10.1186/s12957-016-0929-y
- Dang, D. & Dearholt, S.L. (2018). *Johns Hopkins nursing evidence-based practice: Model and guidelines* (3rd ed.). Indianapolis: Sigma Theta Tau International.
- Fregoli, L., Materazzi, G., Miccoli, M., Papini, P., Guarino, G., Wu, H., & Miccoli, P. (2017).

 Postoperative pain evaluation after robotic transaxillary thyroidectomy versus conventional thyroidectomy: A prospective study. *Journal of Laparoendoscopic & Advanced Surgical Techniques*, 27, 146-150. doi:10.1089/lap.2016.0461
- Ha, K.T, Kim, D.W., Park, H.K., Shin, G.W., Heo, Y.J., Baek, J.W., Lee, Y.J., Choo, H.J., Kim, D.H., Jung, S.J., Park, J.S., Moon, S.H., Ahn, K.J., Baek, H.J., & Kang, T. (2018).
 Comparison of postoperative neck pain and discomfort, swallowing difficulty, and voice change after conventional, open, endoscopic, and robotic thyroidectomy: A single-center cohort study. *Frontiers in Endocrinology*, 9 (416), 1-16. doi:10.3389/fendo.2018.00416
- He, Q., Zhu, J., Zhuang, D., Fan, Z., Zheng, L., Zhou, P., Hou, L., Yu, F., Li, Y., Xiao, L., Dong, X., & Ni, G. (2016). Comparative study between robotic total thyroidectomy with central lymph node dissection via bilateral axillo- breast approach and conventional open procedure for papillary thyroid microcarcinoma. *Chinese Medical Journal*, 129 (18), 2160-2166. doi:10.4103/0366-6999.189911

- Kandil, E., Hammad, A.Y., Walvekar, R.R., Hu, T., Masoodi, H., Mohamed, S.E., Deniwar, A., & Stack, B.C. (2015). Robotic thyroidectomy versus nonrobotic approaches: A meta-analysis examining surgical outcomes. *Surgical Innovation*, 23 (3), 317-325. doi:10.1177/1553350615613451
- Kim, W.W., Jung, J.H., Lee, J., Kang, J.G., Baek, J., Lee, W.K., & Park, H.Y. (2016).
 Comparison of the quality of life for thyroid cancer survivors who had open versus robotic thyroidectomy. *Journal of Laparoendoscopic & Advanced Surgical Techniques*, 26 (8), 618-624. doi:10.1089/lap.2015.0546
- Lang, B.H., Wong, C.K.H., Tsang, J.S., Wong, K.P., Wan, K.Y. (2014). A systematic review and meta-analysis comparing surgically-related compilations between robotic-assisted thyroidectomy and conventional open thyroidectomy. *Annals of Surgical Oncology*, 21, 850-861. doi:10.1245/s10434-013-3406-7
- Lee, J., Kwon, I.S., Bae, E.H., & Chung, W.Y. (2013). Comparative analysis of oncological outcomes and quality of life after robotic versus conventional open thyroidectomy with modified radical neck dissection in patients with papillary thyroid carcinoma and lateral neck node metastases. *Endocrine Care*, 98 (7), 2701-2708. doi:10.1210/jc.2013-1583
- Lee, J., Nah, K.Y., Kim, R.M., Ahn, Y.H., Soh, E., & Chung, W.Y. (2010). Differences in postoperative outcomes, function, and cosmesis: Open versus robotic thyroidectomy. *Surgical Endoscopy, 24*, 3186-3194. doi:10.1007/s00464-010-1113-z

- Paek, S.H., Kang, K.H., Kang, H., & Park, S.J. (2016). Comparison of postoperative surgical stress following robotic thyroidectomy and open thyroidectomy: A prospective pilot study. *Surgical Endoscopy*, *30*, 3861-3866. doi:10.1007/s00464-015-4689-5
- Song, C.M, Ji, Y.B., Bang, H.S., Park, C.W., Kim, H., & Tae, K. (2014). Long-term sensory disturbance and discomfort after robotic thyroidectomy. *World Journal of Surgery*, *38*, 1743-1748. doi:10.1007/s00268-014-2456-8
- Song, C.M., Ji, Y.B., Bang, H.S., Kim, K.R., Kim, H., & Tae, K. (2015). Postoperative pain after robotic thyroidectomy by a gasless unilateral axillo-breast or axillary approach.

 Surgical Laparoscopy Endoscopy & Percutaneous Techniques, 25 (6), 478-482.

 Retrieved from https://journals.lww.com/surgical-laparoscopy/pages/default.aspx
- Sun, G.H., Peress, L., & Pynnonen, M.A. (2014). Systematic review and meta-analysis of robotic vs conventional thyroidectomy approaches for thyroid disease. *Otolaryngology-Head and Neck Surgery*, *150* (4), 520-532. doi:10.1177/0194599814521779
- Tracy, S.M., & DiNapoli, P.P. (2012). Exploring the theory of integral nursing with implications for pain management practice. *International Journal for Human Caring, 16 (1)*, 26-33. Retrieved May 12, 2018, from http://internationaljournalforhumancaring.org/?code=iahc-site

Yoo, J.Y., Chae, Y.J., Cho, H.B., Park, K.H., Kim, J.S., & Lee, S.Y. (2013). Comparison of the incidence of postoperative nausea and vomiting between women undergoing open or robotic- assisted thyroidectomy. *Surgical Endoscopy*, *27*, 1321-1325. doi:10.1007/s00464-012-2607-7

Appendix A: Evidence Synthesis Matrix

Source: Paek, S.H., Kang, K.H., Kang, H., & Park, S.J. (2016). Comparison of postoperative surgical stress following robotic thyroidectomy and open thyroidectomy: A prospective pilot study. *Surgical Endoscopy*, *30*, 3861-3866. doi:10.1007/s00464-015-4689-5

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		C .
Purpose:	Quasi- experimental	VAS scores in	Strengths:
Compare surgical stress	Method:	open group	Robotic & open
of robotic thyroidectomy	Self- report	higher than	surgeries performed by
with open thyroidectomy	Pain scores:	robotic group	same surgeon
	Instrument:		
Sample/Setting:	0-10 visual analog scale	Intraop SPI	Limitations:
15 robotic patients	(VAS) where $0 = no$	difference was	Non- randomized
14 open approach	pain & 10 = worst	borderline	
patients	imaginable pain		Selection bias
	Pain was reported at	Mean operative	Based on patient
Setting not listed	postop 2h, 1d, & 3d	time longer in	preference
-	Surgical stress scores:	robotic group	
Johns Hopkins	Method:		Small sample size
Evidence Appraisal	biophysiologic/blood	Conclusion:	_
	samples	Postop pain	
Level of Evidence:	Instrument:	scores higher	
Level II	SPI (surgical	after open than	
	plethysmographic	after robotic	
Quality:	index) objective		
В	multivariate index tool	No significant	
	measuring serum IL-6	difference	
	levels, serum WBC	among surgical	
	count, & CRP levels	stress markers;	
		robotic thyroid	
	Blood samples were 1d	may have less	
	prior to surgery, postop	systemic stress	
	2h, 1d, 3d	response	

Author Recommendations:

A larger sample size at multiple settings with additional surgeons is needed.

Implications:

Robotic thyroidectomy may not cause increased surgical stress or pain for patients.

Source: Song, C.M., Ji, Y.B., Bang, H.S., Kim, K.R., Kim, H., & Tae, K. (2015). Postoperative pain after robotic thyroidectomy by a gasless unilateral axillo-breast or axillary approach. *Surgical Laparoscopy Endoscopy & Percutaneous Techniques*, *25*(6), 478-482. Retrieved from https://journals.lww.com/surgical-laparoscopy/pages/default.aspx

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Quasi- experimental	Operating time	Strengths:
Compare pain after	Method:	longer & drainage	All patients on identical
robotic	Self- report	amount great in RT	analgesic protocol
thyroidectomy			
versus open	Instrument:	Pain scores	Larger sample size
thyroidectomy	0 to 10 visual analogue	were <u>similar</u> among	
	scale	RT and OT; 1 week	Limitations:
Sample/Setting:		postop = higher	Non- randomized
123 robotic	Pain was measured on	pain score in RT	
thyroidectomy (RT)	the day before surgery	than OT	Pain was not measured
patients	& postop day 1, day 3,		objectively
170 open	week 1, month 1	Amount of	
thyroidectomy (OT)		parenteral	
patients		analgesics given	
		were similar in RT	
Hanyang University		and OT	
Hospital,			
Seoul, South Korea		Conclusion:	
		Postop pain and	
Johns Hopkins		amount of	
Evidence		analgesics are	
Appraisal		similar in RT and	
		OT	
Level of Evidence:			
Level II			
Quality:			
В			

Author Recommendations:

A randomized study with objective measurement is needed.

Implications:

Postop pain and amount of analgesics are similar in robotic and open groups.

Source: Lee, J., Nah, K.Y., Kim, R.M., Ahn, Y.H., Soh, E., & Chung, W.Y. (2010). Differences in postoperative outcomes, function, and cosmesis: Open versus robotic thyroidectomy. *Surgical Endoscopy*, *24*, 3186-3194. doi:10.1007/s00464-010-1113-z

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		<u> </u>
Purpose:	Quasi- experimental	Robotic operating	Strengths:
Compare outcomes	Method:	time longer	Two groups were
for patients	Self- report		similar age, gender, type
undergoing robotic		Postop neck	of operation, and final
thyroidectomy	Instrument:	discomfort &	diagnosis
versus open	Questionnaire based on	swallowing	
	symptoms; asked to	symptoms	A1
Sample/Setting:	grade postop pain in	slightly higher in	Analgesics given using
41 robotic	neck & anterior chest	open group	identical protocol
thyroidectomy	as none, very slight,		Same surgeon for all
patients	slight, moderate, or	41 of 43 patients	surgeries
43 open thyroid	severe 24h after	in open group	sargerres
patients	surgery	reported	Limitations:
		hyperesthesia/	Non- randomized
No setting listed	Questionnaire asked	paresthesia in the	
1 to setting listed	about presence of	neck 1wk postop	Selection bias
Johns Hopkins	hyperesthesia &	Conclusion:	Based on patient
Evidence Appraisal	paresthesia in neck,	Postop pain levels	preference
I LEFT	anterior chest, & shoulder at 1 week & 3	& complications	
Level of Evidence: Level II	months after surgery	were comparable in both groups;	Small sample size
Level II	monuis after surgery	unclear if robotic	-
Quality:		thyroidectomy	Short follow-up period
В		offers real	
		benefits in quality	
		of life	

Author Recommendations:

A larger study with a longer follow-up period is needed.

Implications:

Robotic thyroidectomy may result in less postoperative discomfort.

Source: Aliyev, S., Taskin, H.E., Agcaoglu, O., Aksoy, E., Milas, M., Siperstein, A., & Berber, E. (2012). Robotic transaxillary total thyroidectomy through a single axillary incision. *Surgery*, *153*(5), 705-710. doi:10.1016/j.surg.2012.10.013

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		J
Purpose:	Quasi- experimental	Operating time	Strengths:
Evaluate feasibility	Method:	was less in	Patients matched for
& safety of robotic	Self- report	conventional	tumor size, type, & BMI
transaxillary		group	
thyroidectomy w/	Instrument:		Postop pain managed
focus on postop	0-10 visual analogue	EBL (estimated	the same way for all
pain, morbidity, &	scale (VAS) by nursing	blood loss) similar	patients
oncologic factors in	staff on POD 1 & POD	in both groups	
comparison to open	1		Limitations:
		Similar analgesic	Non- randomized
Sample/Setting:		use between both	
16 robotic		groups	Selection bias
transaxillary neck			Based on patient
procedure patients		VAS was similar	preference
30 open thyroid		on POD 1, but	
patients		lower in open	Small sample size
		group vs robotic	
Division of		group on POD 14;	Short follow-up
Endocrine Surgery,		patients	
Cleveland Clinic		complained of	Very selective in
		pain around	offering robotic
Johns Hopkins		clavicle	thyroidectomy option to
Evidence			patients
Appraisal		Conclusion:	
T 1 05 11		Robotic procedure	
Level of Evidence:		is feasible & safe,	
Level II		but takes longer	
Quality:			
B			

Author Recommendations:

Long- term follow-up is needed.

Implications:

Robotic procedure is not less invasive and takes longer; POD14 pain lower in open group.

Source: Lee, J., Kwon, I.S., Bae, E.H., & Chung, W.Y. (2013). Comparative analysis of oncological outcomes and quality of life after robotic versus conventional open thyroidectomy with modified radical neck dissection in patients with papillary thyroid carcinoma and lateral neck node metastases. *Endocrine Care*, *98* (7), 2701-2708. doi:10.1210/jc.2013-1583

neck node metastases	Endocrine Care, 98 (7), 2		210/jc.2013-1583
Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Quasi- experimental	Operation time in	Strengths:
Compare	Method:	robotic group was	Both groups had similar
oncological	Self- report	longer	age, BMI, tumor, nodes,
outcomes & quality			metastases stage, tumor
of life in patients	Instrument:	Hospital stay &	size, frequency of
undergoing robotic	Questionnaire based on	postop	extrathyroidal
versus open	pain of surgical scar and	complications	extension, and
procedures	presence of	similar in both	multiplicity &
	hyperesthesia &	groups	bilaterality of tumors
Sample/Setting:	paresthesia of neck &		
62 robotic patients	anterior chest 6 months	N::6:4	Limitations:
66 open thyroid	after surgery, graded as	No significant	Non- randomized
patients	minimal, moderate, or	differences in	
	severe	surgical scar pain	Selection bias
Severance Hospital		& neck pain	Based on patient
		between both	choice & cost
Johns Hopkins		groups	
Evidence			Small sample size
Appraisal		C	
1 1 65 11		Conclusion:	Short follow-up time
Level of Evidence:		Robotic	
Level II		thyroidectomy is as effective as	
0 14			
Quality:		open surgery	
В			

Author Recommendations:

More perioperative assessment of oncological outcomes; larger, randomized study to confirm findings with longer follow-up time.

Implications:

Robotic and open thyroid surgeries result in similar outcomes and safety.

Source: Cho, J.N, Park, W.S., Min, S.Y., Han, S., & Song, J. (2016). Surgical outcomes of robotic thyroidectomy vs. conventional open thyroidectomy for papillary thyroid carcinoma. *World Journal of Surgical Oncology, 14*(181), 1-7. doi:10.1186/s12957-016-0929-y

Purpose/Sample Design		Results	Strengths/Limitations
	hod/Instruments)		8
Purpose: Compare surgical outcomes of robotic thyroidectomy (RT) using bilateral axillo-breast approach (BABA) with conventional Quasi Meth self-ro Instr	i- experimental nod: eport ument: pint visual analog score reported 1h op & 1/day until	No significant difference between the two groups in the postoperative pain score Operation time longer in RT Hospital cost higher in RT Conclusion: RT is safe technique	Strengths: Sufficient sample size All surgeries completed by same surgeon Limitations: Non-Randomized Selection bias -patient preference -cost may be factor of preference

	-		
Quality: B			
Author Recommendations: More evidence needed to verify both surgical & oncological safety.			
Implications: BABA RT is safe and surgically complete; no significant difference in pain scores.			
Source: Fregoli, L., Materazzi, G., Miccoli, M., Papini, P., Guarino, G., Wu, H., & Miccoli, P.			

(2017). Postoperative pain evaluation after robotic transaxillary thyroidectomy versus					
conventional thyroidectomy: A prospective study. Journal of Laparoendoscopic & Advanced					
Surgical Techniques, 27, 146-150. doi:10.1089/lap.2016.0461					
Purnose/Sample	Design	Results	Strengths/Limitations		

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		

Purpose:	Quasi- experimental	Longer operative	Strengths:
Compare pain after	Method:	time/hospital stay in	All patients were
robotic assisted	Self- report	RT group	women
transaxillary	1		
thyroidectomy (RT)	Instrument:	Immediately after	Two groups were
versus open	11 point visual analog	surgery, patients in	matched for age,
thyroidectomy (OT)	scale (VAS) from 0-11	RT group had less	thyroid volume, nodule
		pain than OT group	diameter, & BMI
Sample/Setting:	Pain was assessed in		
124 patients	recovery room, first	Pain experienced	All procedures
undergoing total	postop day at 8am &	during remaining	performed by same
thyroidectomy	8pm, postop day 2 at	hospitalization was	surgeon
	8am, and at 7 days	not statistically	
62 in RT group	after surgery	different	As postop analgesia, all
62 in OT group			patients received
		1 wk after surgery,	ketorolac (30mg every
University Hospital		patients in OT	8 hours)
of Pisa Endocrine		group experienced	
Surgery		less pain than RT	Limitations:
		group	Non- randomized
Johns Hopkins			
Evidence		Conclusion:	Selection bias
Appraisal		Both techniques	Based on patient
		showed low postop	preference
Level of Evidence:		pain scores in entire	
Level II		period	Small sample size
Quality:		RT has greater	
В		persistence of pain	
A 41 D	- 		

Author Recommendations:

Further studies are need to explore outcomes of RT in a European population.

Implications:

Postoperative pain was not statistically different between the two groups.

Source: Arora, A., Garas, G., Sharma, S., Muthuswamy, K., Budge, J., Palazzo, F., Darzi, A., & Tolley, N. (2016). Comparing transaxillary robotic thyroidectomy with conventional surgery in a UK population: A case control study. *International Journal of Surgery, 27*, 110-117. doi:10.1016/j.ijsu.2016.01.071

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		

Purpose:	Quasi- experimental	No difference in the	Strengths:
Compare the	Method:	mean postoperative	RT completed by same
technique of	Self-report	pain score at 1 day, 2	robotic console
transaxillary robotic	a con cop cov	weeks, 6 months, &	
thyroid surgery	Instrument:	12 months	RT & OT performed by
(RT) with open	0 to 100 visual		same surgical team
thyroidectomy (OT)	analogue scale (VAS)	Isolated significant	8
	where 100 represented	difference at 3	Both groups matched in
Sample/Setting:	worst imaginable pain	months with the RT	terms of mean BMI,
16 robotic patients		group demonstrating	anthropometry, age,
versus 16 open	Pain was measured	a lower mean pain	gender, size of nodule
patients	preoperatively,	score	
	postoperative day 1,		Long-term follow-up
St. Mary's Hospital	week 2, month 3,	RT took 3 times	
& Hammersmith	month 6, month 12,	longer than OT	Long-term prospective
Hospital, London,	year 2, & year 3		
UK		Conclusion:	Limitations:
		No significant	Non- randomized
Johns Hopkins		difference in	
Evidence		postoperative neck	Selection bias
Appraisal		or anterior chest pain	Based on patient
		between RT & OT	preference
Level of Evidence:			
Level II		RT is both feasible	Small sample size (32)
		& safe in UK	
Quality:		population	
В			

A randomized clinical study is needed to verify RT versus OT.

Implications:

Transaxillary robotic thyroid surgery is an acceptable alternative; no significant difference in pain scores.

Source: Chai, Y. J., Song, J., Kang, J., Woo, J., Song, R., Kwon, H., Kim, S., Choi, J. Y., & Lee, K. E. (2016). A comparative study of postoperative pain for open thyroidectomy versus bilateral axillo- breast approach robotic thyroidectomy using a self- reporting application for iPad. *Annals of Surgical Treatment and Research*, 90 (5), 239-245. doi:10.4174/astr.2016.90.5.239

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		3
Purpose:	Quasi- experimental	Long operating time	Strengths:
Study postop pain	Method:	& hospital stay in RT	All female patients
for robotic thyroid	Self- report		
surgeries using	_	No differences in	No differences in terms
bilateral axillo-	Instrument:	analgesic injections	of age, BMI, tumor
breast approach (BABA)	Questionnaire on iPad using Visual Analog	between groups	size, multifocality, extrathyroidal
	Scale ranging from 0 to	No differences in	extension,
Sample/Setting:	10 and Faces Pain	postop pain scores	lymphovascular
27 BABA robotic	Rating Scale	for throat, anterior	invasion, thyroiditis, &
thyroidectomy		neck, posterior neck,	TNM stage
patients (RT)	Patients were asked	or back between both	
27 open	about pain on postop	groups	Limitations:
thyroidectomy	days 1 to 3 and postop	D.T	Selection bias
patients (OT)	day 14	RT pain scores for	Based on patient
C1 N-4:1		chest pain on postop	preference &
Seoul National		days 1, 2, & 3 were considerable	capable of
University Hospital		considerable	using iPad
Johns Hopkins		RT pain scores for	Non- randomized
Evidence Appraisal		chest pain on postop day 14 decreased	Small sample size
Appraisai		day 14 decreased	Sman sample size
Level of Evidence:		Conclusion:	
Level II		RT has greater	
		cosmetic satisfaction	
Quality:		without increased	
В		pain	
A d. D			

Larger study with longer follow- up is necessary for accurate comparison of RT and OT.

Implications:

RT has greater cosmetic satisfaction and comparable pain scores to OT.

Source: Song, C.M, Ji, Y.B., Bang, H.S., Park, C.W., Kim, H., & Tae, K. (2014). Long-term sensory disturbance and discomfort after robotic thyroidectomy. *World Journal of Surgery, 38*, 1743-1748. doi:10.1007/s00268-014-2456-8

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		

Purpose:	Quasi- experimental	Operative time &	Strengths:
Compare sensory	Method:	drainage amount	Same surgeon for RT
disturbance &	Self- report	higher in RT	surgeries
discomfort after			
robotic	Instrument:	Neck discomfort did	Long- term follow up
thyroidectomy	Visual Analog Scale 0-	not differ between	
(RT) and open	4, rating levels of	OT & RT. Neck	Larger sample size
thyroidectomy	discomfort &	hypesthesia/	
(OT)	hypesthesia/paresthesia	paresthesia was	Limitations:
		higher in RT on	Non- randomized
Sample/Setting:	Measured on the day	POD1 & POD7; no	
118 RT patients	before surgery, postop	difference later.	Sensory changes not
176 OT patients	days 1, 3, 7, and postop	Chest discomfort	measured objectively
	months 1, 3, 6, 12, 18	higher in RT from	
Hanyang		POD1 to 12 mo; no	
University, South		difference at 18 mo.	
Korea		Chest	
		hypesthesia/paresthe	
Johns Hopkins		sia score higher in	
Evidence		RT from POD1 to	
Appraisal		18 mo; recovered to	
		preop levels.	
Level of			
Evidence:		Conclusion:	
Level II		Anterior chest	
		discomfort &	
Quality:		sensory disturbance	
В		are greater in RT	

Minimizing dissection of anterior chest could decrease discomfort & sensory disturbance in RT group.

Implications:

Anterior chest discomfort & sensory disturbance are greater in RT and require time to recover to preoperative levels/comparable to OT group.

Source: Yoo, J.Y., Chae, Y.J., Cho, H.B., Park, K.H., Kim, J.S., & Lee, S.Y. (2013). Comparison of the incidence of postoperative nausea and vomiting between women undergoing open or robotic- assisted thyroidectomy. *Surgical Endoscopy*, *27*, 1321-1325. doi:10.1007/s00464-012-2607-7

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Experimental study,	Anesthesia time &	Strengths:
Compare the	RCT	operating time were	Prospective, double-
levels of	Method:	longer in RT	blinded, randomized
postoperative	Self- report		·
nausea & vomiting	1	Pain score during 6-	Standard anesthetic
(PONV) in women	Instrument:	24h postop period	technique
in open (OT) or	11- point verbal rating	was decreased in RT	-
robotic	scale with 0 being no	compared to OT	All patients were
thyroidectomy	nausea to 10 being	1	euthyroid women with
(RT)	worst possible nausea	PONV was decreased	ASA I or II
	1	in 6-24h postop	
Sample/Setting:	Postoperative pain was	period in RT	Nurses or trainees were
85 OT patients	measured by 11- point	compared to OT	blinded
85 RT patients	verbal analog scale	r · · · · · ·	
F	with 0 being no pain to	Conclusion:	History of smoking,
No setting listed	10 being worst pain	RT reduces incidence	motion sickness, &
8 222	8 F.	& severity of PONV	PONV were comparable
Johns Hopkins	Measurements taken at	compared to OT	between groups
Evidence	0-1h postop, 1-6h	compared to or	groups
Appraisal	postop, & 6-24h postop		Extensiveness of
Pp- u.su.	pestep, ee e 2 in pestep		thyroidectomy was
Level of			comparable between
Evidence:			groups
Level I			Proups
			Limitations:
Quality:			Short follow-up period
A			Short follow up period
1 1			

Surgical techniques with lower incidence of pain or discomfort in the neck, such as RT, may decrease PONV.

Implications:

PONV incidence and pain scores are decreased in RT.

Source: He, Q., Zhu, J., Zhuang, D., Fan, Z., Zheng, L., Zhou, P., Hou, L., Yu, F., Li, Y., Xiao, L., Dong, X., & Ni, G. (2016). Comparative study between robotic total thyroidectomy with central lymph node dissection via bilateral axillo- breast approach and conventional open

procedure for papillary thyroid microcarcinoma. *Chinese Medical Journal*, 129 (18), 2160-2166. doi:10.4103/0366-6999.189911

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Experimental study,	Operating time longer	Strengths:
Determine safety	RCT	in RT	Prospective, randomized
& effectiveness of	Method:		
robotic thyroid	Self- report	No difference in	All patients had
(RT) with open		blood loss, hospital	papillary thyroid
approach (OT) in	Instrument:	stay time, or drain	microcarcinoma
papillary thyroid	Visual analog scale for	volumes between	
microcarcinoma	pain assessment	groups	Same surgeon
			performed all surgeries
Sample/Setting:		Pain scores higher in	
50 RT patients		RT	No difference in
50 OT patients			postoperative care
		Conclusion:	between two groups
Jinan Military		RT is safe and	
General Hospital		effective	Limitations:
of People's			Small sample size
Liberation Army			
Johns Hopkins Evidence			
Appraisal			
Level of			
Evidence:			
Level I			
Quality:			

Author Recommendations:

Long-term follow up with a larger sample size, along with expanded indications are necessary.

Implications:

Higher pain scores in RT group.

Source: Kandil, E., Hammad, A.Y., Walvekar, R.R., Hu, T., Masoodi, H., Mohamed, S.E., Deniwar, A., & Stack, B.C. (2015). Robotic thyroidectomy versus nonrobotic approaches: A meta-analysis examining surgical outcomes. *Surgical Innovation*, *23* (3), 317-325.

doi:10.1177/1553350615613451

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Systematic review with	Longer	Strengths:
Determine safety	meta-analysis	operating times	Large sample size
and oncological		with RT	
effectiveness of	Method:		Limitations:
robotic surgery	Self- report	RT patients	Some studies were non-
(RT) versus open		reported less	randomized
surgery (OT) for	Instrument:	pain 24h	
thyroid surgery	11- point visual analog	postop	
	scale where 0 being no		
Sample/Setting:	pain and 10 being		
1876 OT patients	worst pain imaginable	Conclusion:	
1902 RT patients		RT surgery is	
		safe and has	
Settings not		similar	
listed		complications	
		and outcomes	
Johns Hopkins		as OT; RT has	
Evidence		longer	
Appraisal		operative times	
		than OT	
Level of			
Evidence:			
Level III			
0 11			
Quality:			
В			

Author Recommendations:

Larger controlled trials are needed to evaluate cost- effectiveness, clinical outcomes, & patient satisfaction.

Implications:
RT associated with decreased pain scores.

Source: Ha, K.T, Kim, D.W., Park, H.K., Shin, G.W., Heo, Y.J., Baek, J.W., Lee, Y.J., Choo, H.J., Kim, D.H., Jung, S.J., Park, J.S., Moon, S.H., Ahn, K.J., Baek, H.J., & Kang, T. (2018). Comparison of postoperative neck pain and discomfort, swallowing difficulty, and voice change after conventional, open, endoscopic, and robotic thyroidectomy: A single-center cohort study. *Frontiers in Endocrinology*, *9* (416), 1-16. doi:10.3389/fendo.2018.00416

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Quasi-experimental	Postoperative	Strengths:
Compare postop	Method:	pain higher in	Same surgeon performed all
neck pain,	Self-report	ET & RT	surgeries
swallowing, &		group, but no	
voice change	Instrument:	significant	
between open	Postoperative symptom	differences in	Limitations:
thyroid (OT),	survey with numerical	pain scale	Female predominance in OT
endoscopic (ET),	rating scale	scores; reason	group, all females in ET & RT
& robotic (RT)		for difference	groups
		unclear	
Sample/Setting:			Unequal group sizes between
169 OT patients		Neck	OT, ET, & RT
32 ET patients		discomfort	
53 RT patients		highest in RT	Inconsistent time intervals of
		group; lowest	postoperative survey
Busan Pak		in OT	
Hospital			Only one postoperative survey
		Conclusion:	
Johns Hopkins		Postoperative	Survey conducted by 3 nurses
Evidence		neck pain and	
Appraisal		discomfort	
Y 1 0		were more	
Level of		common in ET	
Evidence:		& RT groups,	
Level II		rather than OT	
Ovalitan			
Quality:			
D			

Author Recommendations:

Additional studies are needed with matched patients and procedures.

Implications:

Neck pain and discomfort are more common with RT than OT.

Source: Kim, W.W., Jung, J.H., Lee, J., Kang, J.G., Baek, J., Lee, W.K., & Park, H.Y. (2016). Comparison of the quality of life for thyroid cancer survivors who had open versus robotic thyroidectomy. *Journal of Laparoendoscopic & Advanced Surgical Techniques*, *26* (8), 618-624. doi:10.1089/lap.2015.0546

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Experimental study,	RT operation	Strengths:
Compare quality	RCT	time longer	Patients selected through block
of life between	Method:		randomization before the study
open	Self-report	No difference	
thyroidectomy		in long-term	Same number of patients
(OT) and robotic	Instrument:	postoperative	assigned to surveyors blindly
thyroidectomy	Telephone counseling	pain between	and randomly; surveyors did
(RT) patients	survey from 0-10	RT & OT	not know operation method
	points	groups	
Sample/Setting:			Long follow-up period
112 RT		Conclusion:	
117 OT		RT and OT	Limitations:
		showed no	Quality of life terms are
Dept. of Surgery,		difference in	subjective versus objective
Kyungpook		quality of life	
National			Expectation of surgical results
University			could differ
Hospital			
T 1 TT 1:			
Johns Hopkins			
Evidence			
Appraisal			
Level of			
Evidence:			
Level I			
LOVOLI			
Quality:			
A			

Author Recommendations:

RT and OT show no difference in quality of life during follow-up.

Implications:

RT and OT have comparable quality of life results and no difference in long-term postoperative pain.

Source: Lang, B.H., Wong, C.K.H., Tsang, J.S., Wong, K.P., Wan, K.Y. (2014). A systematic review and meta-analysis comparing surgically-related compilations between robotic-assisted thyroidectomy and conventional open thyroidectomy. *Annals of Surgical Oncology*, *21*, 850-861. doi:10.1245/s10434-013-3406-7

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Systematic review with	Operating time	Strengths:
Compare	meta-analysis	& hospital stay	Large sample size
complications	Method:	longer with RT	
between robotic	Method not listed	than OT	Limitations:
thyroidectomy			All 11 studies were non-
(RT) and open	Instrument:	Similar pain	randomized
thyroidectomy	Instrument tool not	scores at 1	
(OT) patients	listed	week, 1 month,	Selection bias
		& 3 months	
Sample/Setting:			
839 RT patients		RT chest	
1536 OT patients		paresthesia	
		worst, but	
Settings not		normal at 3	
listed		months	
Johns Hopkins		Blood loss	
Evidence		comparable	
Appraisal		Comparation	
-PP-w-sw-		Conclusion:	
Level of		Comparable	
Evidence:		complications	
Level III		and morbidity	
Quality:			
В			

Author Recommendations:

RT and OT surgery should be discussed prior to decision making. Prospective studies are needed.

Implications:

Similar pain scores between RT and OT.

Source: Adam, M.A., Speicher, P., Pura, J., Dinan, M., Reed, S.D., Roman, S.A., & Sosa, J.A. (2014). Robotic thyroidectomy for cancer in the US: Patterns of use and short-term outcomes. *Annals of Surgical Oncology, 21* (12), 3859-3864. doi:10.1245/s10434-014-3838-8

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Systematic review	RT has higher	Strengths:
Compare patterns	Method:	rates of chest	Data was extracted by trained
& outcomes of	Method not listed	paresthesia	& certified tumor registrars
robotic		than OT	
thyroidectomy	Instrument:		Overall large sample size of
(RT) to open	Instrument tool not	RT and OT	patients
thyroidectomy	listed	have	
(OT)		comparable	Limitations:
		hospital stay	Selection bias
Sample/Setting:		length	
225 RT patients			RT has small sample size
57,729 OT		Conclusion:	
patients		Short-term	Database coding errors are
		outcomes of	possible
Settings not		RT are	
listed		comparable to	
		OT	
Johns Hopkins			
Evidence			
Appraisal			
Level of			
Evidence:			
Level III			
0			
Quality:			
В			

Author Recommendations:

More studies are needed to compare specific complications and long-term outcomes.

Implications:

RT and OT short-term outcomes are comparable.

Source: Sun, G.H., Peress, L., & Pynnonen, M.A. (2014). Systematic review and meta-analysis of robotic vs conventional thyroidectomy approaches for thyroid disease. *Otolaryngology-Head and Neck Surgery*, *150* (4), 520-532. doi:10.1177/0194599814521779

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Systematic review with	Operating time	Strengths:
Compare	meta-analysis	longer with	Included randomized
postoperative	Method:	RT: hospital	controlled trials
outcomes of robotic	Self-report	stay & postop	
thyroidectomy (RT)		complications	Same 2 authors extracted data
and open	Instrument:	similar; no	
thyroidectomy (OT)	5-point grading scale to	significant	Large sample size
	grade neck & anterior	difference in	
Sample/Setting:	chest pain at 24 hours	postop	Limitations:
726 RT patients	postop	analgesic use	Some non-randomized trials
1205 OT patients			included
	5-point grading scale to	No significant	
No settings listed	grade neck & anterior	difference in	Some selection bias may be
	chest pain at 1 week, 1	postop neck	present
Johns Hopkins	month, & 3 months	pain; higher	
Evidence	postop	anterior chest	Attrition bias present in one
Appraisal		pain in RT;	study
	5-point grading scale to	resolved 1-3	
Level of Evidence:	grade neck & anterior	months later	Short follow-up
Level II	chest pain at 1 day, 1		
	week, 1 month, & 3	Neck	Cohorts significantly different
Quality:	months postop	paresthesia	in age & BMI
В		higher in OT;	
	4-point scale to grade	anterior chest	Publication bias
	paresthesia	paresthesia	
		higher in RT	
		Conclusion:	
		RT & OT have	
		similar	
		complications	

Author Recommendations:

Long-term studies with validated instruments are needed.

Implications:

RT & OT have similar complications. No significant difference in postoperative neck pain; neck paresthesia higher in OT.