Bethel University

Spark

All Electronic Theses and Dissertations

2020

Use of Subthreshold Aerobic Activity Versus Rest Alone for Treatment in Patients Diagnosed with a Concussion

Kesenya R. Havlicek Bethel University

Follow this and additional works at: https://spark.bethel.edu/etd

Part of the Kinesiology Commons

Recommended Citation

Havlicek, K. R. (2020). Use of Subthreshold Aerobic Activity Versus Rest Alone for Treatment in Patients Diagnosed with a Concussion [Master's thesis, Bethel University]. Spark Repository. https://spark.bethel.edu/etd/276

This Master's thesis is brought to you for free and open access by Spark. It has been accepted for inclusion in All Electronic Theses and Dissertations by an authorized administrator of Spark.

USE OF SUBTHRESHOLD AEROBIC ACTIVITY VERSUS REST ALONE FOR TREATMENT IN PATIENTS DIAGNOSED WITH A CONCUSSION

A MASTER'S CAPSTONE PROJECT SUBMITTED TO THE GRADUATE FACULTY OF THE GRADUATE SCHOOL BETHEL UNIVERSITY

 $\mathbf{B}\mathbf{Y}$

KESENYA HAVLICEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN ATHLETIC TRAINING

MAY 2020

BETHEL UNIVERSITY

USE OF SUBTHRESHOLD AEROBIC ACTIVITY VERSUS REST ALONE FOR TREATMENT IN PATIENTS DIAGNOSED WITH A CONCUSSION

KESENYA HAVLICEK

May 2020

Approvals:

Project Advisor: Janet Johnson, DPT, LAT, ATC

Project Advisor Signature: Jamb John

Dean of Business, Leadership, Health, and Social Sciences: Chad Osgood, Ed.D., LAT, ATC

Dean of Business, Leadership, Health, and Social Sciences Signature: Charles T. Commun.

Athletic Training Program Director: Chad Osgood, Ed.D., LAT, ATC

Athletic Training Program Director Signature:

Abstract

Background: Treatment of concussions has historically included rest until asymptomatic, but the latest concussion consensus statement questioned the effectiveness of this treatment. Ambiguity continues to prevail amongst sports medicine practitioners on whether rest or subthreshold aerobic activity will aid in quicker symptom resolution and shorter duration of the injury.
Purpose: Do patients, who have been diagnosed with a concussion, have decreased symptoms

and a quicker return-to-play when subthreshold aerobic exercise is used in their treatment versus rest alone?

Results: Twenty-five scholarly articles were analyzed using a matrix format and were evaluated with the PEDro Scale, CASP Questionnaire, or a series of four questions. Twenty-three of the 25 studies either recommended subthreshold activity, demonstrated that it was safe, found participating in an aerobic intervention was not more detrimental than rest, or concluded rest to be harmful in concussion rehabilitation. Three studies recommended rest as a quality intervention for concussion treatment.

Conclusion: The use of subthreshold aerobic activity as a treatment for patients diagnosed with a concussion is safe and more effective for resolution of symptoms and return to baseline activities than rest. Instead of waiting for symptoms to resolve, an athlete should be started on a protocol introducing subthreshold aerobic activity as soon as a few days post-injury. If treatment has already been delayed, and the patient has been symptomatic for months, they will still benefit from subthreshold aerobic activity.

Implications for Research and Practice: These findings challenge the current clinical practice of rest for post-concussion treatment. The literature encourages athletic trainers and physicians

who manage concussions to adopt a treatment protocol with subthreshold aerobic activity. Further research is needed on *excellent* quality articles with a larger number of participants and investigating when subthreshold aerobic activity should be initiated post-concussion for optimal results.

Keywords: concussion, subthreshold aerobic activity, physical activity, rehabilitation, rest

Abstract	3
Chapter I: Introduction	.8
Statement of Purpose1	0
Need for a Clinical Review1	11
Significance for Athletic Training1	2
Chapter II: Methods1	14
Search Strategies1	14
Inclusion and Exclusion Criteria	15
Number and Types of Articles1	15
Criteria for Evaluating the Studies1	7
Summary1	18
Chapter III: Literature Review and Analysis1	19
Synthesis of Matrix1	19
Synthesis of Major Findings1	19
Critique of Strengths and Weaknesses5	58
Summary5	59
Chapter IV: Discussion, Implications, and Conclusions	51
Literature Synthesis6	51
Current Trends and Gaps in Literature6	54
Implications for Athletic Training6	56
Recommendations for Future Research6	58

Table of Contents

Conclusion	
References	70
Appendix A	77
Appendix B	
Appendix C	

List of Tables

Table 1: Level of Evidence and Quality of Included Articles1	1		7
--	---	--	---

Chapter I: Introduction

Over the past decade, sports-related concussions (SRC) have become a topic of interest around the world. As many as 2.8 million traumatic brain injuries are reported in the United States each year alone, and of this 2.8 million, a large majority of the injuries are classified as mild traumatic brain injuries (mTBI) (Gupta, Summerville, & Senter, 2019). The term concussion is used interchangeably with mTBI, and it occurs when biomechanical forces are applied to the skull causing the brain to accelerate and decelerate rapidly. This injury may result when an athlete is hit directly in the head, neck, or other part of the body. The force that is applied when hit or rapidly moved is transferred to the brain ultimately causing the injury (McCrory et al., 2017; Broglio et al., 2014). In addition, Register-Mihalik et al.'s study concluded that females are at greater risk for sports-related concussions and tend to have more symptoms with increased severity and prolonged recovery in comparison to males (Register-Mihalik, Vander Vegt, Cools, & Carnerio, 2018). Other populations and demographics have not been studied enough to determine if they too are at a higher risk for acquiring a concussion or enduring a prolonged recovery. Moreover, clinicians recognize concussions as one of the most complex injuries to manage in sports medicine. Sport medicine clinicians understand clinical judgement needs to be made for each case since there is no gold standard test that is able to diagnose a concussion with absolute certainty (McCrory et al., 2017; Broglio et al., 2014).

When an athlete is suspected to have a SRC, he or she is evaluated based on "clinical symptoms, physical signs, cognitive impairment, neurobehavioral features, and sleep/wake

disturbances" (McCrory et al., 2017, p. 3). Symptoms may include, but are not limited to, headache, dizziness, confusion, loss of consciousness, irritability, gait unsteadiness, slowed reaction times, or drowsiness. If the potential for a concussion diagnosis exists, the athlete should be removed from play and entered into a protocol to further determine if a SRC is the official diagnosis. This is necessary as concussion symptoms can progress over time. Once an athlete is diagnosed with a concussion, the treatment process begins. Return-to-play and school accommodations should be discussed at the first appointment with the health care provider. Education should be given to the patient and their family to make sure everyone has an understanding of the seriousness of a concussion injury. Red flags and expectations going forward are important topics to discuss at the initial appointment. For many clinicians, their first recommendation is for the athlete to rest. Theoretically, this allows the patient to calm down their symptoms and decrease brain energy demands to encourage healing. Rest has not yet been proven to achieve healing in all SRC cases, and recently, clinicians are challenging the theory by suggesting their patients be more active while remaining at a subthreshold activity level during the acute phase (24-48 hours) of healing (McCrory et al., 2017). Subthreshold activity is defined as an exercise that does not produce symptoms and is objectified as 80 percent of the patient's maximum heart rate (Leddy et al., 2019). Evaluating rest versus subthreshold aerobic activity for symptom resolution and return-to-play status is the subject of this literature review.

Other injuries that affect the central nervous system have seen improvements in recovery time and symptom severity when aerobic activity is introduced. Low to moderate activity has

shown to aid with neural regeneration after a traumatic event, therefore sports medicine clinicians are interested in the effects of this type of activity in patients with SRC (Micay, Richards, & Hutchison, 2018). The expert panel at the latest concussion consensus conference, the 2017 Concussion in Sport Group, is taking a particular interest in how rest and exercise can affect concussion recovery. Their points of view regarding concussion treatment continue to expand, and they now state that after the first 24-48 hours post-injury, rest is not necessarily beneficial. This leads to the question, what is beneficial after that phase? (McCrory et al., 2017). The question for this Critical Review of the Literature is: Do patients, who have been diagnosed with a sports-related concussion, have decreased symptoms and a quicker return-to-play when subthreshold aerobic exercise is used early in their treatment versus rest alone?

Statement of Purpose

The purpose of this paper is to evaluate whether rest or subthreshold aerobic activity provides greater benefits for patients diagnosed with a sports-related concussion shortly after their initial injury. To determine the effectiveness of both treatment options, specific outcomes will include symptom rating scores as well as the duration until the patient is cleared to return-to-play. Preliminary research has been completed on this topic, but concrete, consistent evidence seems to be minimal, which may be preventing clinicians from adopting the new protocol.

Need for a Clinical Review

According to the 2017 Concussion in Sports Group, concussions typically recover in 10-14 days, which is similar to the recovery time of a minor musculoskeletal injury. This may be influential in concussions not being seen as high-risk situations needing better outcomes and therefore not studied (McCrory et al., 2017). Nonetheless, post-concussion syndrome, a prolongation of symptoms per result of a SRC, can occur. If adding subthreshold aerobic activity to a patient's treatment plan will decrease the likelihood of a prolonged recovery, patients will potentially experience less academic and social dysfunction (Leddy et al., 2019). Further discovery of treatment options is needed to not only return young patients back to sport in a timely manner but to return them to a prior level of function and life quality as quickly as possible.

Rest remains to be the most common method to treat concussions as it is a precautionary measure. The brain can be a challenging structure to understand. It is mysterious, and concussion treatments, up until recently, have not been challenged. Rest has been the accepted method of treatment as it seemed to help the majority of patients, and knowledge of concussions was limited. Just as an ankle sprain is treated with rest, the same healing benefits are thought to be true for the brain because the patient is allowing the brain to use more energy toward healing and less towards completing daily tasks. Also, the patient tends to feel better when resting as symptoms are relieved. However, the benefits of rest as a treatment for concussions is not significantly backed by evidence. In fact, the "rest-is-best approach was based on animal

research and consensus guidelines" (Leddy et al., 2019, p. 320). This is why researchers such as Leddy et al. (2019) have begun to investigate if rest is truly the best treatment option for SRC. Undeniably, rest will be needed in some capacity after injury, but the exact duration is not known (McCrory et al., 2017). Also, avoiding exercise while still symptomatic has not been shown to accelerate the recovery process whereas subthreshold exercise has shown benefits in improving physical, psychological, and academic outcomes in patients (Grool et al., 2016). Increased knowledge on aerobic activity in comparison to rest alone should guide treatment of concussions to be more effective than current recommendations, and perhaps reduce the duration of concussive symptoms in athletes.

Significance for Athletic Training

Athletic trainers (ATs) are individuals who work under a physician, and they provide many services in a variety of settings. ATs provide "primary care, injury and illness prevention, wellness promotion and education, emergent care, examination and clinical diagnosis, therapeutic intervention and rehabilitation of injuries and medical conditions" (NATA, 2019, n.p.). Athletic trainers are well educated in concussion management and are usually the first to evaluate an acute concussion. ATs manage concussions as they feel comfortable and guide the athlete through the return-to-play process (Broglio et al., 2014).

Part of an athletic trainer's education includes concussion management, however, distinct differences exist in how much each AT knows about concussions, as concussion research has exploded over the past decade. Statements regarding protocols are important, allowing all practitioners to understand their role as well as inform how to treat certain illnesses and injuries. However, the concussion protocol has not been updated by the National Athletic Trainer's Association (NATA) since 2014 (Broglio et al., 2014). Six years later, this position statement is due for an update as the concussion consensus conference occurs every four years. The conference last took place in 2016, and the next concussion conference is to be held in Paris at the end of October in 2020 (6th International Consensus Conference on Concussions, 2020). Some Information in the NATA position statement is not as relevant as it once was since many discoveries surrounding concussions have been made in recent years. For example, the NATA position statement on concussion protocol still includes the suggestion to treat concussions with rest until the patient is asymptomatic (Broglio et al., 2014). This variance is why conclusive results on whether rest or aerobic activity show greater benefits for treatment after the initial injury could be very helpful. Overall, this review is intended to contribute to the existing research surrounding concussion rehabilitation in hopes of positively impacting people who are diagnosed with a concussion.

Chapter II: Methods

This chapter describes the processes and methods used to examine articles on the effectiveness of subthreshold aerobic activity within concussion rehabilitation. Search strategies, inclusion and exclusion criteria, number and types of studies selected, and criteria used for evaluating studies are discussed below.

Search Strategies

The majority of articles for this Critical Review of the Literature came from using CLICsearch, a collective database provided to all students at Bethel University, MN. Other articles were found using PubMed and Google Scholar databases. Additional studies were discovered by looking at the reference page of high-quality articles previously located and through word of mouth from medical professionals. Keywords used during the searches included "concussion," "activity," "rehabilitation," "physical," "subthreshold," "rest," "pediatric," "youth," and "aerobic." Initial results yielded between 852 to 973 articles. Additional keywords, as listed above, were added to the search to aid in narrowing the number of hits. The word "and" was disregarded because it was broadening the search and yielding unrelated articles. Furthermore, CLICsearch has a function where the researcher can choose to include only peer-reviewed articles. This function was included in all searches to help narrow the findings. After these modifications, the number of articles was reduced to 61, but an additional 36 articles were disregarded due to being irrelevant or not abiding by the set inclusion and exclusion criteria. This meant 25 articles were able to be used in this Critical Review of the Literature. All articles were published between the years of 2012 and 2019.

Inclusion and Exclusion Criteria

Inclusion and exclusion criteria were established so that recent, relevant articles would be gathered and utilized for this literature review. In order for an article to be included, it had to have subthreshold aerobic activity, physical activity, or rest as an intervention for concussion rehabilitation. All populations and ages were included, and all studies had to be conducted within the past decade. Furthermore, no restrictions on the type of article design were taken into consideration.

Exclusion criteria eliminated articles with interventions other than subthreshold aerobic activity, physical activity, or rest for a concussion. Articles in languages other than English were excluded as well as studies that required a purchase to read beyond the abstract. No study conducted more than 10 years ago was considered for this literature review.

Number and Types of Articles

Twenty-five articles were selected based on the inclusion criteria. Many of the articles were evaluated using the PEDro Scale and Critical Appraisal Skills Programme (CASP) Questions (The George Institute for Global Health, n.d.; Raab & Craig, 2016). The PEDro scale and CASP questionnaire forms are included in Appendix B for additional review. Systematic reviews, in particular, were evaluated using a series of four questions: "Is the clinical question focused?", "Was the literature search thorough and exhaustive?", "Are the included studies of

high quality and valid?", and "Is the selection of the included studies reproducible?" (Raab & Craig, 2016, p. 81). These evaluations helped to determine the quality of each article. All studies included in this review were granted quality status of either *excellent*, good, or fair. If the article was evaluated via the PEDro scale, a score of nine or ten was considered *excellent*, six through eight was considered good, and below six warranted a quality status of *fair* (Hariohm, Prakash, & Saravankumar, 2015). If the CASP Questionnaire or series of four questions was used, the determination of the quality of the article was more subjective to the researcher. The CASP Questionnaire does not have clear guidelines that determine the quality of the article. Instead, the more times "yes" can be answered to the questions or the "no" can be explained, the higher the quality the article will be. The ability to answer "yes" to all questions when using the four-question method means that the article can be considered of *good* quality. When questions did not have an answer, the level of quality was affected negatively (Raab & Craig, 2016). Furthermore, the level of evidence for each article was determined by using the "Hierarchy of Evidence for Intervention Studies" chart (Fineout-Overholt, Melnyk, Stillwell, & Williamson, 2010). This chart is located in Appendix B. Levels I, II, III, and IV were present amongst the various articles. Each level represents a different article design. Level I represents systematic reviews; level II represents randomized control trials; level III represents controlled trials without randomization; and level IV represents case-control and cohort studies. There were three articles for level I, eleven articles for level II, three articles for level III, and eight articles for level IV.

Table 1 provides a clear representation of the level of evidence and quality for each article included in the literature review.

Level of Evidence	Excellent	Good	Fair	Total Number of
	Quality	Quality	Quality	Articles
Ι	0	3	0	3
Π	3	7	1	11
III	0	3	0	3
IV	0	8	0	8
Total				25

 Table 1: Level of Evidence and Quality of Included Articles

Criteria for Evaluating the Studies

Each included study was placed into a matrix developed by the Bethel University Graduate Nursing Program. For each study, information recorded into the matrix included citation, design methodology, purpose, sample/setting, design instruments, results, and recommendations. Subheadings for "level of evidence" and "quality of the article" were also present in the matrix under the sample and setting column. As stated above, the level of evidence and overall quality were evaluated using the PEDro Scale, CASP Questionnaire, or a series of four questions (The George Institute for Global Health, n.d.; Raab & Craig, 2016). Based on the "Hierarchy of Evidence for Intervention Studies" chart, a lower level of evidence number generally implies that the article would be of higher quality (Fineout-Overholt et al., 2010). Good-quality articles clearly communicate their study to their population, contain correlating findings to other high-quality, current literature, include a strong sample size, and have a control group represented in their research. On the contrary, low-quality articles oftentimes have missing information in its research, lack a consistent baseline demographic group, and do not produce conclusive results.

Summary

Articles on the effectiveness of subthreshold aerobic activity as an intervention for patients diagnosed with a concussion were researched using multiple databases. Many articles were determined useful according to the designated inclusion and exclusion criteria. In total, 25 articles were found and placed in a matrix format. The level of evidence and level of quality were then reported for each article.

Chapter III: Literature Review and Analysis

Synthesis of Matrix

The intent of chapter three is to review and analyze the literature from 25 scholarly, current articles with the goal of answering the research question presented in chapter one. To accomplish this goal, the matrix format developed by the Bethel University Graduate Nursing Program was utilized. This chart helped organize the articles and identify information that compared the concussion intervention of subthreshold aerobic activity to the intervention of rest. The articles within the matrix were divided and categorized according to their level of evidence as determined by the "Hierarchy of Evidence for Intervention Studies" chart (Fineout-Overholt et al., 2010). Of the possible seven levels, four are represented: systematic reviews, randomized control trials, controlled trial without randomization, and case-control or cohort studies. Articles within each category are listed and summarized alphabetically according to the authors' last name. The matrix and analyzed information can be located in Appendix A.

Synthesis of Major Findings

Level 1 Evidence: Systematic reviews or meta-analyses are the type of evidence that make up level 1. Three articles reviewed fit into this category and are summarized below.

Lal, Kolaowsky-Hayner, Ghajar, and Balamane (2018) conducted a systematic review and meta-analysis with the intention of finding how physical exercise affects various outcomes in patients who have been diagnosed with a concussion. Databases used to find articles included MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, PsycINFO, and SPORTDiscus. Inclusion criteria consisted of any sex or age, patients who were diagnosed with an mTBI or concussion within the past three months, patients who completed an intervention such as stretching, biking, or treadmill activity, comparison to either physical rest or no physical exercise, and assessed outcomes with in the article such as but not limited to the Post-Concussion Symptom Scale (PCSS), Immediate Post-Concussion Assessment and Cognitive test (ImPACT), Balance Error Scoring System (BESS), neuropsychology tests, or duration of rest. A total of 14 articles were included in the study, and of those 14 studies, seven focused on adolescents, and one focused on children and adolescents. The remaining six studies included were conducted on adults. Randomized control trials, cohort studies, before and after studies, and a propensity score matching study were the types of studies used in the review.

The results from the included studies showed a significant decrease in PCSS scores when physical activity was added as an intervention in comparison to the control (rest or no physical activity) group (Lal et al., 2018). The number of days it took to return-to-play was not significantly different from the control. Another finding from this systematic review showed that the number of days it took the patient to return back to work was decreased. The physical activity group was able to return to work after an average of 17.7 days whereas the rest group averaged about 32.2 days. Furthermore, those who took the ImPACT and participated in physical activity saw better scores in reaction time, but the BESS test and neuropsychological parameters were not affected. The final result found "The Grading of Recommendations Assessment, Development and Evaluation (GRADE) scores were moderate for the PCSS, symptoms,

ImPACT, BESS, and neuropsychological tests" (Lal et al., 2018, p. 743). Overall, this study shows that physical activity has a positive effect on patient symptoms and PCSS scores in those diagnosed with a sports-related concussion.

McLeod, Lewis, Whelihan, and Bacon (2017) conducted a study to review the use and effectiveness of rest as well as return-to-play protocols for sports-related concussions. Articles were found via 6 online databases: CINAHL, SPORTDiscus, Educational Resources Information Center, Ovid MEDLINE, and PubMed. To be included in the study, the articles had to be written in English, had to be original research, and had to evaluate rest or return-to-activity progression. "Narrative (clinical) reviews, editorials, critically appraised topics, commentaries, abstracts, animal research, studies of non-sport-related concussion, or original research that did not address the primary clinic questions of interest" were all excluded (McLeod et al., 2017, p. 263). After looking for articles that followed the specified inclusion and exclusion criteria, 40 articles were found. Nine articles addressed the use of rest, 10 articles studied the effectiveness of rest, 17 studies evaluated compliance with return-to-play guidelines, and 4 studies looked at return-to-activity outcomes. All studies were evaluated within their category group. Of the 40 included articles, five are addressed independently later in this Critical Review of the Literature. Authors of those studies include Gibson, Nigrovic, O'Brien, and Meehan (2013), Maerlender, Rieman, Lichtenstein, and Condiracci (2015), Moser, Glatts, and Schatz (2012), Moser, Schatz, Glenn, Kellias, and Ivrson (2015) and Thomas, Apps, Hoffman, McCrea, and Hammeke (2015).

Results from McLeod et al. (2017) show that the use of rest is not being prescribed regularly to patients diagnosed with a SRC, or at least, rest is not being documented. In addition, confusion regarding how to prescribe rest on an individualized basis to patients is present. An initial period of cognitive and physical rest seems to help acute symptoms, but strict-rest appears to worsen symptoms and increase the duration of injury in comparison to those who participate in current standard care treatments. Findings from the articles discussing return-to play indicate return-to-play guidelines and assessment tools vary greatly between practitioners. This study also found more information is needed on the effectiveness of the return-to-play protocols. In conclusion, ambiguity is still persistent amongst healthcare providers on the use of cognitive rest, concussion-assessment tools, and return-to-play protocols. The most important finding correlating with the question addressed in chapter one is that rest is helpful right away post concussion, but the patient should be monitored as rest recommendations need to change as the patient's symptoms improve. Patient care must be personalized in concussion management and return-to-play at this time as so many questions about concussion rehabilitation persist (McLeod et al., 2017).

Schneider et al. (2017) completed a systematic review looking at the differences between rest and active treatments for individuals with a sport-related concussion. Specifically, they wanted to know the benefits of rest following a concussion and for how long someone should rest. The other main question they had asked about the effectiveness of active treatment for athletes with a SRC. They obtained all of their sources from OVID, EbscoHost, and Proquest databases. Their inclusion criteria was that the study had to be original research, had to have an SRC as the primary diagnosis, and had to evaluate the effects of rest and active treatment. Exclusion criteria eliminated all review articles. In total, 8224 citations were found using the databases, but only a total of 28 studies met all of the inclusion criteria. There were nine studies evaluating the effects of rest, and 19 studies evaluating active treatment. In total, 3218 patients between the ages of five and 53 were part of this study.

Schneider et al. (2017) found that cognitive and physical rest for the first 24 to 48 hours post-concussion is appropriate. However, after this time frame, the patient should begin to increase their activity level, but remain under their personal symptom exacerbation thresholds and avoid strenuous activity. Though these suggestions were made clear through this study, the researchers also recognized that the exact amount of rest is not yet known. They also made note that the quality of the articles were lacking as only five randomized control trials (RCT) were used out of the 28. Nonetheless, the findings still provide guidance that "closely monitored subsymptom threshold, submaximal exercise may be of benefit" (Schneider et al., 2017, p. 930).

Level 2 Evidence: Randomized control trials are the type of evidence that make up level two. 11 articles reviewed fit into this category and are summarized below.

Chrisman et al. (2019) studied youth between the ages of 12 and 18 years old who had persistent concussion symptoms and evaluated their responses to a minimal in-person subthreshold aerobic activity program or a stretching protocol. A total of 30 participants completed this study. Nineteen were randomized into the intervention (aerobic) group, and 11 were randomized into the control (stretching) group. In-person visits took place at the initial appointment and 6-weeks later when the program finished. Surveys were also taken at 3- and 6-month follow-up. All symptom reporting forms were completed online using the Health and Behavior Inventory. Accelerometry valuation was a main portion of this study too. This was evaluated for five to seven days at baseline, and again at six weeks post-intervention to objectively measure moderate to vigorous activity.

The intervention group participated in safe aerobic activity that did not go over 80% of the patient's target heart rate. This was tested and determined at the initial appointment via the Buffalo Concussion Treadmill Test (BCTT) (See Appendix C). In this group, participants were asked to complete aerobic activity daily for five to 10 minutes greater than their baseline moderate to vigorous activity accelerometry score. Each week, the aerobic activity would increase an additional five to 10 minutes as determined by the research assistant. The goal was to reach 60 minutes of exercise by the final week of treatment. If symptoms increased while exercising, the intensity was decreased by 10 percent. The participants were allowed to choose what activities they would like to do for this treatment. Treadmill, biking, stairs, and calisthenics were the most common methods chosen. The stretch group was given a program that would take about five to 10 minutes. They were asked to complete the program daily. This group was also contacted weekly to ensure they were tolerating the program well.

At the end of the study by Chrisman et al., patients who were in the subthreshold aerobic activity group saw a quicker decrease in symptoms compared to those in the stretch group. All

improvements were maintained at six months. Results from this study also showed that the exercise continues to be a beneficial treatment for concussion injuries, and the exercise program can be followed correctly and adequately with minimal in-person contact with care providers.

Gladstone et al. (2019) investigated how 12 - 17-year olds diagnosed with a concussion responded to one of two programs: a full-body stretching program or a subthreshold aerobic training program. In addition, the patient's neurocognition was examined as well as their perception of quality of life. To be included in the study, the patient had to be within the acceptable age range, diagnosed with a concussion, symptomatic for a minimum of four weeks and maximum of 16 weeks, and symptomatic when activity increased. After the intake process, 30 of the 395 individuals evaluated were accepted into the study. Then, patients were asked to complete an aerobic bike test. They used a stationary bike and began at a level of 11 on the Borg rate of perceived exertion (RPE). The bike's resistance level was set at two, and the patient exercised at these settings for five minutes. After that, the patient was asked to increase their RPE by one level. This pattern continued for 30 minutes or until the patient reported symptoms. The patients reported back to the clinic a week later to be evaluated again. At this appointment, they were randomized into either the aerobic exercise group or stretching group. If placed in the aerobic exercise group, the patient completed the stationary bike test again to determine an appropriate, individualized home program. The prescribed exercise time was calculated by taking 80% of the time when the patient became symptomatic during the stationary bike test in the clinic. The aerobic exercise group was asked to complete their program five to six days a

week and were given a stationary bike for their home. They returned to the clinic once a week over a six-week period to be re-evaluated and have their home program adjusted if needed. If the patient was randomized in the stretching group, they were also asked to complete their program five to six days of the week and check-in weekly with the clinic to either review their current program or receive new stretches.

Two evaluation forms were used. First, the NIH Toolbox Cognition Battery was used as it looks at the patient's cognitive, sensory, motor and emotional functions (Gladstone et al., 2019). Second, the pediatric Quality of Life Inventory (PedsQL) was used to assess the patient's physical, emotional, social, and school functioning. Results showed those in the subthreshold aerobic exercise group had better scores from the NIH Toolbox Cognition Battery than those in the stretching group when comparing pre-post scores. The PedsQL showed significant increases in both the subthreshold aerobic exercise group and the stretching group.

Overall, this study by Gladstone et al. indirectly stated that benefits are seen when subthreshold aerobic activity is prescribed to patients recovering from a concussion. Quality of life is increased in both the aerobic exercise group as well as the stretching group, but only the subthreshold aerobic exercise group showed significant improvement in neurocognition. Even though symptoms and duration of injury were not discussed, this study begins to answer the question of what is causing the quicker and better outcomes in patients participating in the subthreshold aerobic exercise programs. Exercise is known for increasing nerve growth factor in the brain and causes neurogenesis to occur in the hippocampus. This is significant as the hippocampus is responsible for learning and memory. Cerebral blood flow also increases with aerobic activity and "is thought to be the result of angiogenesis" which is "related to increased vascular endothelial growth factor" (Gladstone et al., 2019, p. 6). Again, this helps with fluid cognition and may be the specific reasoning why NIH Toolbox Cognition Battery measures were improved only in patients who completed subthreshold aerobic exercise.

Kurowski et al. (2017) conducted a six-week study looking at the possible benefits of subthreshold aerobic activity performed by concussed participants in comparison to a stretching program. Thirty participants were included in this study between the ages of 12 and 17. All participants were diagnosed with a mTBI and continue to experience symptoms anywhere from four weeks to 16 weeks post injury. At the first visit, patients were evaluated for eligibility and screened for neck concerns. Then, they completed an aerobic exertional test using a stationary bike. Patients were asked to begin biking at a pace that felt like a level 11 on the Borg rate of perceived exertion (RPE). Resistance was set to level two for five minutes. After those five minutes were completed, the patients were asked to increase their RPE by one level. This process was repeated until symptoms increased or the patient had been exercising for 30 minutes. At this time patients were excluded if they were unable to complete two minutes of activity or remained asymptomatic after 30 minutes. No treatment was given at this time. At the week one appointment, patients who remained eligible were entered into a run-in period. The run-in period allowed the researcher to see what symptom resolution may look like naturally without intervention. Patients were then randomized into either the aerobic activity group or stretching

group. If placed in the aerobic group, the participants completed the aerobic exertional test on the stationary bike again, and the data from the test helped to form a personalized aerobic exercise program. Instructions to complete aerobic activity five or six days each week at 80% of the duration they experienced an increase in symptoms during the exertional test. Each week patients in this group would return and retest on the stationary bike, and new exercise levels were advised based on performance. Patients randomized into the full-body stretching group were also asked to complete their program five or six days each week. Upper and lower extremity stretches as well as trunk stretches were included. At their weekly appointments, the program was reviewed and every two weeks they would receive a new set of stretches. Both groups performed their programs for a total of six weeks. The data collected at week seven was considered the primary outcome of the study.

The Post Concussion Symptom Inventory (PCSI) was used to quantify symptoms and determine if the interventions were beneficial (Kurowski et al., 2017). Both the patients and their parents completed an inventory. Results showed that patient symptoms improved quicker in the subthreshold aerobic exercise group than in the stretching group with greatest improvements seen in the first four weeks of activity. However, parent PCSI scores did not show a significant difference between interventions. In conclusion, subthreshold aerobic activity is beneficial to use with adolescents who have prolonged symptoms of a concussion in comparison to a full-body stretching program.

Leddy et al. (2019) determined that subthreshold aerobic exercise is a beneficial treatment for adolescents diagnosed with a sports-related concussion. This intervention may speed the recovery and decrease the chances of having a prolonged recovery. In this RCT, subthreshold aerobic activity was compared to a stretching program during the acute phase of a concussion to determine the effectiveness of the treatments. To be eligible to partake in the study, participants needed to have sustained a sports-related concussion within the past 10 days and be between the ages of 13 and 18. Both males and females were included. In total, 103 individuals participated. 52 were in the aerobic exercise group while 51 were in the stretching group.

The aerobic group was asked to exercise aerobically for 20 minutes every day. Use of a stationary bike or treadmill was recommended but walking and jogging was acceptable if the participant did not have access to such exercise equipment. In addition, the athletes completed the BCTT at the first appointment to ensure they could safely exercise to at least 80% of their target heart rate. Clinicians would retest the BCTT weekly as long as the patient was still experiencing symptoms and advance the program as needed. The participants in this group were told to not stretch and to rest except for the 20 minutes of subthreshold aerobic activity they were being asked to complete.

The stretch group was given a program to follow every day that would not significantly increase their heart rate. They were also asked to complete their activity for 20 minutes daily and to rest. The athletes in the stretch group were given the same amount of attention as the

exercise group and were also asked to complete the BCTT weekly as long as they remained symptomatic. Just as the aerobic group's program would advance weekly so would the stretch group's program.

Results from Leddy et al. (2019) showed that participating in aerobic exercise had a significant impact on the athlete's recovery and can be considered an effective treatment for concussions. Patients in the aerobic exercise group had a mean recovery of 13 days whereas the stretching group's recovery mean was at 17 days. Also, the aerobic group (n=2) had less participants with a delayed recovery in comparison to the stretching group (n=7). Symptom scoring was completed daily by the participants. The exercise group's symptoms improved quicker than the stretch group, but it was not considered significant. Overall, this study supported aerobic exercise as part of the recovery plan and is the first RCT that used subthreshold aerobic activity as a treatment within the first week of a concussion injury. The early initiation of treatment in this study is what makes it stand out amongst others currently available on this topic.

Leddy et al. (2018) studied a group of adolescents between the ages of 14 and 19. Both male and female high school athletes were welcome to participate as long as they had sustained a sports-related concussion within 10 days of starting the trial. A total of 54 individuals completed the study. The main goals were to see if exercise impacted the recovery of adolescents diagnosed with a sports-related concussion, and to evaluate the potential uses of the heart rate threshold of the BCTT to determine a predicted recovery time. At the initial visit, also known as

visit number one, athletes were randomized into two groups: the BCTT group (n=27) or standard care group (n=27). The BCTT group received the exercise intervention, and the standard care group did not participate in any treadmill test as they were considered the control. At the first visit, all participants took the ImPACT test. Approximately 14 days later participants returned for the second visit and were retested. This time both groups were given the BCTT in addition to the ImPACT test. Between the first visit and second visit patients were responsible for recording their symptoms every evening via a program on the computer.

The protocol followed for the BCTT started at a zero percent incline and speed between 3.2 and 3.6 (Leddy et al., 2018). The exact speed used was determined by the patient's height. Every minute the incline was increased by one degree, but the speed would remain the same. The patient would complete the test until an increase in symptoms occurred or they fatigued. Each minute the athlete's heart rate, symptoms, and rating of perceived exertion (RPE) were recorded. After all testing was completed, the data was analyzed. The first goal of this study was assessed by looking at symptom scores in relation to recovery times when the BCTT was used. For analysis of the second goal, the average heart rate of the individuals randomized into the BCTT group was taken over the last minute of the BCTT during their first visit and their time to recovery was recorded too.

Results from the work of Leddy et al. (2018) showed the days to recovery were not significantly different between the BCTT group and standard care group. Further analysis on prolonged recovery verses typical recovery times were not significantly different between groups

either. Both groups had decreased symptoms within the 14 days between the first visit and second visit, and those in the BCTT group did not see any increase in symptoms the day after the test. Also, prolonged recovery was associated with patients presenting with a lower heart rate at visit one. Conclusions that these individuals are likely to respond poorly to early exercise were made as well. Overall, conducting the BCTT does not cause any harm to the patient as early as the first week of being diagnosed with a sport-related concussion. The use of the BCTT is encouraged to help sport medicine clinicians prescribe appropriate subthreshold aerobic exercise as a treatment early after initial injury. Understanding the safety and effects for use of the BCTT after SRC allows future studies to be conducted on subthreshold aerobic exercise to see if it aids with recovery in ways that reduces symptoms quicker or speeds recovery (Leddy et al., 2018).

Maerlender et al. (2015) conducted a study with 28 college athletes who recently sustained a concussion. Participants were evaluated for a concussion as soon as possible by an athletic trainer. During the initial concussion evaluation, the athlete was asked if they would be interested in participating in a research study. If consent was obtained, the athlete was assigned to either the standard care group or the physical exertion group. In total, 12 females and three males were in the standard care group, and eight females and five males were in the physical exertion group. Then, the athletes were told to meet with the designated research AT daily. Primarily, the daily meetings were scheduled to check on the patient's current status and activity level. Tests that were used to monitor the athlete's recovery include a demographic

questionnaire, ImPACT, the Borg CR10 RPE scale, the post-ride symptom change rating, and accelerometer graphs.

Athletes in the physical exertion group used a stationary bike to complete their exercise program at a RPE level within the range of zero to six (Maerlender et al., 2015). The particular RPE scale used goes to a maximum level of 10, so exercising at levels zero to six would be considered mild to moderate activity. The goal for the athlete was to reach 20 minutes of biking, but if their symptoms became uncomfortable, they were asked to stop. After completing the activity, the participants would document the highest RPE scale level achieved during their session as well as any changes in symptoms. This protocol was completed daily until no symptoms were experienced post exertion. Patients in the standard care group were told to avoid any activities beyond those needed for school. The use of accelerometer data was the only method used to verify the athlete's activity level throughout the study.

Results showed no significant difference between groups in the median number of days to recovery. Those involved in the physical exertion group noted more symptom changes over having no changes after each session. For example, after completing a mild level ride, an average of 1.8 symptoms would increase. Researchers saw that vigorous activity was associated with an increased recovery time; however, mild symptom increases did not interfere with recovery. In conclusion, this study showed physical exertion following a concussion can begin shortly after injury, but it may not be more beneficial than standard care protocols (Maerlender et al., 2015).

Micay et al. (2018) looked at a population of 15 male adolescents who were diagnosed with a sport-related concussion by a physician to determine if subthreshold aerobic activity was feasible and if the intervention was effective. Effectiveness was defined as symptom reduction and time to return-to-play. To be included in this study, the participants had to remain symptomatic five days after the injury date and be between the ages of 14 and 18. Once included in the study, patients were randomized into either the exercise group or usual care group. A total of eight patients were in the aerobic exercise group and seven patients were in the usual care group. The aerobic exercise group started their intervention six days post injury which included eight sessions using a stationary bike. Increases of the intensity and duration on the bike occurred throughout the sessions. During the first session, the patient biked for 10 minutes at 50% of their maximal heart rate. The second session increased to 20 minutes in duration, but the heart rate goal remained the same as the first week. All following sessions increased activity time by 20 minutes. The patient's heart rate was also increased by five percent each session after the second week, but they could not exceed 70% of their maximum heart rate at any given time. The patients in the aerobic exercise group were instructed to complete this activity two days consecutively and then take a rest day. This schedule was adhered to for a total of 11 days. The PCSS was used to gather symptoms scores before and after each exercise session. The usual care group rested until told otherwise by a physician. When activity was advised to participants in the usual care group, they were not supervised. All participants, in both groups, were evaluated once a week for four weeks.

Results from the study by Micay et al. indicated that aerobic activity was safe to administer and does not cause symptom exasperation. Effectiveness of aerobic activity was not significantly different than the usual care group in terms of return-to-play. However, correlation between symptom severity and time to medical clearance was apparent. The more initial symptoms a patient presented with, the longer recovery and time until they were back to their preinjury performance levels. Furthermore, symptom severity improved quicker in patients who participated in the aerobic exercise group than the usual care group. Significant reduction in symptoms occurred in the aerobic exercise group between weeks one and three, but the usual care group did not have significant reduction in symptoms until week four. This finding validates the use of subthreshold aerobic exercise as a treatment for a SRC in the postacute phase (Micay et al., 2018).

Mychasiuk, Hehar, Ma, Candy, and Esser (2016) studied rats to discover how voluntary exercise affects concussion recovery in terms of symptom resolution and return-to-exercise. The rats were randomly selected to be given a mTBI through a lateral impact device or sham injury. The rats were all anesthetized for the lateral impact which caused a 180 degree horizontal rotation to occur, simulating a concussion. Then, subjects were placed into one of five groups varying in running wheel conditions. Group one were rats who received a mTBI and no exercise. The rats were kept in their cages with three other subjects, but did not have access to a running wheel. In total this group was made up of 11 males and nine females. Group two consisted of rats who sustained a mTBI and were allowed to immediately return to their running wheel. A total of eight males and eight females were in this group. Group three consisted of rats who sustained a mTBI but were delayed three days before allowed access to their running wheels. Nine males and eight females were in this group. Group four was similar to group two; however, the rats were not given a running wheel until seven days post injury. This group had eight males and eight females. Group five included the rats who were not allowed socialization and play. These five groups were compared to the control groups. This first control group consisted of rats (20 males and 18 females) who were allowed to exercise, and the second control group (8 males and 9 females) consisted of rats who were not allowed to exercise. Specific outcomes evaluated in this study included topics surrounding exercise, behavior, and socialization post mTBI. Telomere length and gene expression changes were also evaluated in the prefrontal cortex and hippocampus.

Mychasiuk et al. (2016) concluded that if exercise was part of the treatment plan within the first three days post injury, significant motor and cognitive functioning was positively affected. Also, rats who were in the no play and no exercise group did not recover well. Rats in this group performed at a similar level as the animals who sustained a mTBI and did not exercise. This was noted as a significant finding because the lack of socialization and activity mimicked what happens when a patient is recommended strict rest post concussion. Furthermore, gene expression and telomere length measurements showed that exercise helped the brain to recover quicker in both the hippocampus and prefrontal cortex. All these findings work together to prove that exercise is a beneficial treatment for pediatric patients diagnosed with a concussion.

Sufrinko et al. (2017) conducted a secondary analysis of a randomized control trial looking at whether the response to concussion treatments of activity or rest differs if the patient had signs of a concussion or only symptoms of a concussion. Signs were defined as external findings such as loss of consciousness or amnesia. Symptoms are defined as the patient's subjective perception of their condition such as headache, dizziness, or fogginess. All 93 participants included in this study were between the ages of 11 and 18 years old and presented to the emergency department within 24 hours of injury.

Depending on the participants' history they were either placed in the signs or symptoms only group. After that, patients were randomized into the rest group or standard care group. The standard care group was allowed to be prescribed exercise as seen fit by the physician. The signs group had 17 participants in the standard care group, and 19 were in the rest group. The symptoms groups had 29 participants in the standard care group and 29 participants in the rest group. All participants completed a symptom and activity journal for 10 days. They also attended follow up appointments.

The conclusion of this study by Sufrinko et al. (2017) found a distinct difference in how patients with signs or only symptoms of a concussion respond to strict rest. Patients in the signs group benefited from being part of the rest only group as it improved their verbal memory scores, but patients with only symptoms did not see the same improvement. Also, patients in the rest only group were made more symptomatic within the first 10 days post-concussion. Sufrinko et al. suggests this may be because patients who are more symptomatic present to the emergency department with more fear and anxiousness about symptoms. Then, when the patient is told to rest, they may become emotionally distressed causing secondary symptoms to develop too. Rest seems to be helpful for individuals with signs of a concussion, but standard care is better for patients presenting with only symptoms of a concussion. This study demonstrates that individualized, personal care is necessary for patients diagnosed with a concussion (Sufrinko et al., 2017).

Teel et al. (2018) studied 40 individuals aged 18 through 30 to see the effects of aerobic exercise on concussion outcomes in a healthy population. To be included, participants needed to fit the age requirements as well as exercise three or more days a week. Once the individual was determined eligible for the study, they were randomized into two groups. The intervention group (aerobic activity) and non-intervention group. No matter the group the patient was assigned to, everyone completed concussion metrics and an exertional aerobic test via a stationary bike. This was done two times approximately 14 days apart. Between the two testing dates the intervention group completed six sessions where they would exercise for 30 minutes. The intensity was determined by the patients maximal oxygen consumption. For the first session, the individual would exercise at 60% of this maximum. By the last session, patients were exercising at 80% of their maximal oxygen consumption. Oxygen level checks occurred during activity at five, 15,

and 25 minutes. The non-intervention group was also known as the non-training group, and they did not participate in any specific protocol.

Concussion metrics evaluated included symptoms, cognition, balance and vision (Teel et al., 2018). A variety of tools were used to determine the outcomes of the two groups. The CNS vital signs test assessed areas such as attention span, problem solving, and reaction time. The Standardized Assessment of Concussion evaluated orientation, immediate and delayed memory, and concentration. The BESS tested the patient's balance, and the Graded Symptom Checklist was used to report and rate severity of symptoms. The final test used to evaluate concussion metric was the Vestibular/ Ocular Motor Screening (VOMS) which guides the patient through a variety of visual tasks. The patient was also asked to report any dizziness, headache, nausea, or fogginess before or immediately after this particular test.

The outcomes from these measurements showed that the intervention groups symptoms improved between sessions. In addition, "Cognitive flexibility, executive functioning, reasoning, and total symptoms score outcomes were better, but composite memory, verbal memory, and near-point convergence distance scores were worse at the second session" (Teel et al., 2018, p. 1156). Though considered worse, both the intervention group and nonintervention group had predominantly a small-sized effect. The only medium-sized effect was the intervention group in regard to symptom scores. Overall, the intervention of aerobic activity did not have many effects on concussion assessments with a healthy population. This means concussion outcome tests can

continue to be used without making adjustments to scores when an aerobic intervention is used and return-to-play decisions can be made as current recommendations suggest.

Thomas et al. (2015) conducted a study on 88 patients diagnosed with a concussion in the emergency room. He looked specifically at the intervention of strict rest and compared it to current standards for treatment. The goal of the study was to determine if strict rest improved recovery and outcomes for those with concussions. All included participants sustained a concussion within the past 24 hours, presented to the emergency department, and were between the ages of 11 and 22. Once the patients consented to the study, they were asked to complete a balance test called the BESS test as well as a neurocognition test (ImPACT). Then, participants were randomized into one of two groups. Either the intervention group (n=45) or standard care group (n=43). The intervention group consisted of strict rest which meant five days of only rest. School and work were not permitted for members in this group. After the five days, the patients would begin a return-to-activity program. The standard care group or the control group were instructed to rest for the first one to two days but could begin a program to return-to-activity after that. Both groups were asked to keep a journal and record their physical activity, mental activity, and symptom severity. Symptoms were rated according to the PCSS. Follow-up appointments were completed at day three as well as day 10. Patients would complete the balance, neurocognition, and neuropsychiatric assessments at the follow-up appointments. Data was evaluated by using linear mixed-model analyses and sample size calculations.

The primary result from this study concluded that individuals who were part of the strict rest group reported more symptoms on a daily basis and a slower recovery. This finding indicates that strict rest initially after a concussion does not assist the recovery process and may have caused symptoms to increase. Additionally, balance and neurocognition test scores were not significantly different than the control group. Using the standard care approach of rest is still considered the better treatment option and is recommended for pediatric patients to follow after being diagnosed with a concussion (Thomas et al., 2015).

Level 3 Evidence: Controlled trials without randomization are the type of evidence that make up level 3. Three articles reviewed fit into this category and are summarized below.

Moser et al. (2012) studied the treatment outcomes of cognitive and physical rest for 49 high school and collegiate athletes who sustained a concussion. All participants were between the ages of 14 and 23. Also, 67% of the population were male and 33% were female. After patients were diagnosed with a concussion, they were prescribed at least one week of cognitive and physical rest as treatment by a physician at the Sports Concussion Center of New Jersey (SCCNJ). Patients were divided into groups based on their date of injury and when they presented to the SSCNJ. Group 1 (n = 14) consisted of patients who presented to the clinic within one to seven days. Group 2 (n = 22) consisted of patients who presented to the clinic within eight to 30 days, and group three (n = 13) consisted of patients who presented to the clinic within more than 31 days post-injury.

Protocol followed for the intake process of patients included completion of paperwork, medical history exam, ImPACT post-concussion testing, an education session on ImPACT results and prescribed rest treatment, and instructions to follow-up no sooner than a week. Patients continued to attend follow-up appointments until ImPACT scores normalized, they were asymptomatic with and without physical exertion, and were cleared for pre-injury activities. For symptom scoring the Concussion Symptom Scale was used. Rest in this study was instructed as no school, homework, travel, trips outside the house, driving, visits with friends outside the house, computer, texting, video games, reading, chores, and no physical exercise. The patients were not allowed to participate in any sporting activities and almost all took off one week of school. At the second appointment, patients were either instructed to continue rest or start returning to school. Accomodations for school were given and patients were still instructed to not participate in physical activity. However, if the patient felt they were improving significantly, they were told to call the SCCNJ to see if adding some more activity would be reasonable prior to their next appointment.

At the end of the study, results showed significant improvements in ImPACT scores as well as symptom scores (Moser et al., 2012). No matter the group the patient was categorized into, no significant difference was seen in symptom scores. Another group of 28 patients received an extra week of rest. These patients had similar results to the other groups, but they did score better in verbal memory, processing speed, and reaction time sections of the ImPACT test. The improvements in all groups show cognitive and physical rest may be a useful tool for concussion treatment whether the athlete is in an acute phase or prolonged phase.

Moser et al. (2015) looked at adolescent athletes who had been diagnosed with a concussion and their response to 1 week of prescribed rest. The total population of this study was 13 athletes between the ages of 12 and 23 years old, and all were experiencing a prolonged recovery. Also, 77% of the participants reported a diagnosis of ADHD, learning disability, or two prior concussions. Inclusion criteria involved not taking part in rest prior to the study, taking the ImPACT test within one month of injury, taking the ImPACT test again at the initial appointment before rest, following instructions for rest treatment, and completing another ImPACT test at the follow-up appointment. "The present study replicates and extends the study by Moser et al. [2012], while attempting to control for possible spontaneous recovery" (Moser et al., 2015, p. 59).

Patients completed the ImPACT test prior to coming to the clinic and took the test again at the clinic. In addition, education on how to follow the required rest was reviewed by giving the patient a list of activities to avoid which included physical exercise, chores, attending school, homework, traveling, trips outside the home, computer use, and other similar activities. Patients were encouraged to listen to relaxing music, listen to audiobooks, fold laundry, take slow walks, sleep, meditate, or take a bath.

ANOVA tests were used in the study by Moser et al. (2015) to show significant differences, and it found that rest does improve ImPACT scores and total symptoms scores. Post

hoc analysis was also completed. It showed no difference in symptoms or ImPACT scores between the pre-clinic and first appointment assessments, but significant differences in symptoms or ImPACT scores were seen between the time rest was prescribed to the follow-up appointment. In all, symptoms were improved in 54% of patients, but that percentage increases to 87% of patients if narrowing the population to only those who had increased concussion symptoms before starting the rest treatment. After completing the rest treatment, improvement was determined if ImPACT scores were better in two or more cognitive areas or symptoms scores were decreased. Therefore, a total of eight or 61.5 percent of participants benefited from rest as a treatment for prolonged concussion recovery. Overall, this study concluded that using education, reassurance, and one week of rest as concussion treatment works to reduce symptoms and improve cognitive function in adolescents.

Willer et al. (2019) set out to compare aerobic exercise, placebo-like stretching, and rest interventions in adolescents who were diagnosed with a sports-related concussion. He also looked at differences among females and males. To be included in this study, athletes had to be at least 13 years old and no older than 18 years old. They also needed to present within 10 days of SRC. Once determined eligible to participate in the study, the patients were placed into one of three groups. A total of 48 athletes were in the rest group, 52 athletes were in the exercise group, and 51 athletes were in the placebo-like stretching group.

All groups were required to submit their symptom scores using the Post Concussion Symptom Score (PCSS) tool every evening via a computer program between the hours of 7pm and 10pm (Willer et al., 2019). The exercise group were given a subthreshold aerobic exercise program based on their heart rate achieved during the BCTT. Specifically, 80 percent of the patient's heart rate at the end of the BCTT was used for their individualized subthreshold aerobic exercise program. The activity the athletes were required to complete daily consisted of 20 minutes on a stationary bike or treadmill at the target heart rate. A five-minute warm-up and cool-down was also incorporated. If symptoms worsened prior to the 20 minutes, the athlete was asked to stop. For accuracy, all participants in this group were given a watch that displayed the individual's current heart rate. Each week, patients in this group would return for an appointment to take the BCTT again and determine a new subthreshold aerobic activity heart rate goal. Participants in the stretching group were given a packet with breathing exercises and whole-body stretches. Every week the stretches were a bit more difficult, but the program was designed to not raise the patient's heart rate. The athletes in this group were also required to complete their program for 20 minutes every day and were given a watch with a heart rate feature to make sure their heart rate did not increase significantly over their resting heart rate during stretching. They also completed the BCTT every week. Finally, the rest group was told rest is needed for their brain to heal. They were instructed to not participate in sports, gym class, or any other activity that increased their heart rate. They were also told to avoid watching television or using their phones. This is unique to the rest group as the other groups were not advised in this way. Athletes in the rest group were still required to come into the clinic every week to complete the BCTT.

Results from this study showed the rest group recovered in approximately 16 days which was significantly delayed (P=.020) from the exercise group whose median recovery was at 13 days. The placebo group also was significantly delayed in recovery at 17 days. The exercise group only had four percent of its population experience a delayed recovery whereas the placebo group had 14 percent and the rest group had 13 percent. The comparison between males and females did not result in any significant differences, but the females did report more symptoms if in the rest group. These findings showed that the rest group and placebo-like stretching group had similar outcomes in days to recovery and symptom reporting. Subsymptom threshold aerobic exercise prescribed within the first week of a SRC was the most effective intervention out of the three and resulted in quicker recovery from a SRC.

Level 4 Evidence: Case-control or cohort studies are the type of evidence that make up level 4. Eight articles reviewed fit into this category and are summarized below.

Cordingley et al. (2016) conducted a study that looked "to evaluate the safety, tolerability, and clinical use of graded aerobic treadmill testing" and "to evaluate the clinical outcomes of treatment with a submaximal aerobic exercise program" (Cordingley et al., 2016, p. 693). One hundred six patients were included in the study. They were between the ages of 11 and 19 and were diagnosed with an acute sports-related concussion or were experiencing a prolonged recovery due to a SRC. During the initial appointment, patients filled out information regarding demographics, medical history, previous concussions, and family history. They also filled out

the PCSS. When necessary, parents helped their child report this information. A neurosurgeon completed the clinical history and physical exam.

Moving forward with the study, patients were asked to complete a graded aerobic treadmill test. Specifically, the BCTT was used "to assess physiological recovery, classify post-concussion syndrome subtype, and reassess patients following treatment" (Cordingley, et al., 2016, p. 693). The participants were then categorized into four groups. Those groups were physiologically recovered, physiological post-concussion disorder (PCD), vestibulo-ocular PCD, and cervicogenic PCD. Physiological PCD means the patient is still experiencing symptoms whereas vestibulo-ocular PCD meant the patient did not have symptoms during the treadmill test but still qualified for the study based on vestibulo-ocular dysfunction. Cervicogenic PCD means that the patient did not experience symptoms during the treadmill test either but qualified to remain in the study due to a potential neck soft tissue injury. Patients part of the physiological PCD were given a specific protocol to follow in regard to their at-home exercises. They were asked to complete a five-minute warm up, 20-minute aerobic exercise at 80% of their maximum heart rate achieved at the clinic, and a five-minute cool down five days a week. Follow up occurred every two to four weeks to advance or change the program.

The results of the study by Cordingley et al. showed physiological recovery in 63 of the 65 patients tested. This test also identified 58 patients who could be classified with physiological PCD and one patient as cervicogenic PCD. Furthermore, 41 patients completed all the follow up steps in the physiological PCD group and completed the submaximal aerobic exercise protocol.

In total, 37 patients out of the 41 improved and 33 returned to sports. Overall, graded aerobic testing was proven to be safe, tolerable, and clinically valuable for pediatric patients. The protocol used can be beneficial for both diagnostic and management purposes (Cordingley et al., 2016).

Dobney et al. (2018) conducted a study to estimate the time frame when patients with a concussion experience the greatest decrease in symptoms after being introduced to aerobic rehabilitation. Participants reported to Montreal Children's hospital where they were evaluated, diagnosed, and treated for a concussion. If the patient was not improving after two weeks post injury, they were referred for active rehabilitation which has been an ongoing program through this hospital. In all, 677 patients participated in this study and 54% were female. Their average age was around 14 years old.

Patients who were enrolled in the study reported their symptoms at three different appointments: the initial appointment when they were entered into the active rehabilitation concussion program, their first appointment at physiotherapy, and at their follow-up physiotherapy appointment. The tool used to gather symptoms scores was the Post-Concussion Scale- Revised (PCS). Symptoms were always recorded prior to activity. Activity rehabilitation protocol included aerobic activity, coordination/skill practice, visualization, education, and motivation. For aerobic activity, patients were to exercise on a stationary bike or treadmill at 60% of their maximum heart rate. This activity was completed for 15 minutes daily. If symptoms worsened during this time, the patient stopped exercising. Also, if the patient needed to stop prior to 15 minutes, the time stopped at became the new goal for their home program. Coordination and skill were individualized based on sport specific activities such as shooting or stick handling. This was done for a maximum of 10 minutes. Heart rate was monitored while the patient completed their aerobic activity as well as during sport specific skill work. Then, the participant would complete five to 10 minutes of visualization. Lastly, education was given at each clinic visit (Dobney et al., 2018). Topics such as expected recovery, symptom progression, coping with a concussion injury, and return-to-sport/school were addressed. Patients were instructed to continue the program at home and record what activities they did each day as well as their symptoms.

On average, patients would begin active rehabilitation 45 days post-concussion (Dobney et al., 2018). If categorized in the group where activity was started less than two weeks' post-concussion, the patients started around day nine. Those in the six weeks or more groups started activity 87 days post-concussion on average. From the initial physiotherapy appointment to the follow-up appointment, all patients saw a decrease in symptoms. However, the patients who started activity within two or three weeks saw more significant improvements at the follow-up appointment than those who started after six weeks. Also, the participants who started activity at less than two weeks, four weeks, and five weeks post injury. Patients who started activity at less than two weeks or more than six weeks post concussion had similar results in symptom scores. In conclusion, this study shows that active rehabilitation is beneficial as a

treatment for concussion in children and adolescents who are slow to recover. All groups saw improvements, and they did not differ based on the timing active rehabilitation was initiated.

Gibson et al. (2013) studied cognitive rest and its effects on symptoms of a sports-related concussion. In order to be included in this study, the athlete had to sustain a concussion due to sport or a similar mechanism and be symptom-free by the end of the study. A total of 184 patients fit this criteria and therefore, were included. All participants were between the ages of eight and 26. After diagnosis, patients completed the PCSS, BESS test, and a neurocognitive test. They continued to follow-up at the clinic for check-in and retesting of the BESS test and computerized neurocognitive test. The point in which patients would return for an appointment was not consistent amongst all participants. All patients were also asked to complete PCSS symptom inventory on a daily basis throughout their recovery as it was the primary outcome being assessed.

Data gathered for analysis included demographics, concussion history, PCSS scores and treatment plans (Gibson et al., 2013). Specific attention was given to find if cognitive rest was recommended to the patient. The patient's medical record needed to state that rest was recommended rather than self-reported. A total of 135 athletes had completed medical records and were analysed. The results looked at the symptoms of patients who recovered less than 30 days and those who took over 30 days to recover. It also looked at the relationship between cognitive rest and symptom resolution. Overall, 85 athletes were recommended cognitive rest, and 58% of the athletes recommended for rest were under the age of 15. 79 of the athletes in the

rest group also experienced a prolonged recovery. The mean time it took to recover from a concussion in athletes who were prescribed rest was about 57 days compared to 29 days for those who were not prescribed rest. However, only "the initial PCSS score was associated with the duration of concussion symptoms" (Gibson et al., 2013, p. 840). The recommendation for cognitive rest was not related to the time it took for symptom resolution. Overall, prolonged cognitive rest should be advised with caution as the evidence for its effects remains limited.

Grool et al. (2016) studied patients who had been diagnosed with a concussion to determine if physical activity participation within seven days post injury has an impact on the occurrence of persistent postconcussive symptoms (PPCS). Individuals who reported to the emergency department for a concussion, were between the ages of five and 17, and did not have any of the exclusion criteria were allowed to be part of this study. In total, 3063 patients were enrolled, but 2413 patients completed all necessary requirements 9. At the initial appointment, participants gave information regarding demographics and prior concussion injuries. Parents were allowed to help if needed. Then, injury characteristics were recorded using the Acute Concussion Evaluation inventory, and symptoms were recorded using the Post-Concussion Symptom Inventory (PCSI). The SCAT-3 was administered to assess balance, cognition, and physical signs as well. Follow-up appointments occurred via online or phone at seven days and 28 days post enrollment. Parents documented symptoms for their children if they were between the ages of five and seven. All other participants self-reported their symptoms. In addition to reporting symptoms, patients reported any physical activity they were participating in. This was noted by selection of a category that best fit the patient. Categories included no activity, light aerobic exercise, moderate exercise, and full exercise. Descriptions of each category were provided.

The main outcome evaluated was the occurrence of PPCS which was defined as at least three symptoms that were new or worsened over the 28 days of the study (Grool et al., 2016). A total of 733 patients developed PPCS. Results showed 1677 individuals participated in the early physical activity and 736 individuals had no physical activity. Those categorized in the early physical activity group had a lower chance of PPCS than those who did not participate in physical activity. Also, patients who were symptomatic at day seven were less likely to have PPCS if participating in light aerobic activity, moderate activity, or full-contact activity than those who were not doing any physical activity. Statistical analysis using a propensity match score helped to evaluate the effectiveness of physical activity as a concussion treatment, and concluded, based on the symptoms reported on day 28, that early physical activity is beneficial. The PPCS scores taken on day 28 found 28.7 percent of patients who participated in early physical activity reported post-concussive symptoms. This differs from the patients who partook in conservative rest as 40.1 percent in that group were still reporting symptoms at that time. This significant difference indicates that taking part in physical activity within one week of a concussion injury may help with symptom resolution and decrease the likelihood of PPCS in children and adolescents.

Howell et al. (2020) conducted a study to identify any relationships between participation in exercise post-concussion and symptom severity, postural control, and time to symptom-resolution. The population consisted of 72 D1 collegiate athletes who were all 18 years old or older. Anyone who had a lower extremity injury affecting gait, a current psychiatric condition, a concussion diagnosed within the past six months, or were delayed in getting paperwork completed were excluded from the study. All participants were asked to complete the PCSS within 48 hours of their injury. Then, they completed the PCSS again along with a dual-task and balance assessment at the follow-up appointment. The follow-up appointment took place anywhere between two and seven days post-concussion. No randomization occurred in this study, but participants were divided into groups. The first group consisted of athletes who partook in exercise between their initial injury and the follow-up appointment (n=13). The second group consisted of athletes who did not participate in any exercise between their injury and follow-up appointment (n=59). The decision to allow patients to exercise in the time frame before the follow-up appointment was made by a medical provider and confirmed by the team physician.

Those in the exercise group initially rested but shortly after sustaining their concussion, they began exercising under the supervision of a clinician within. The athletes could either exercise by biking on a stationary bike or by lightly jogging on a treadmill for 10 to 15 minutes as long as their symptoms did not exasperate. If symptoms did increase during activity, the athlete was asked to stop. The athlete could try the activity again the next day as long as their

symptoms had returned to the level where it was the previous day prior to exercising. Intensity, duration, and frequency of exercise was not documented. At the follow-up appointment, all athletes, in both groups, were asked to complete a single and dual task gait assessment. The single task was to walk normally along a path whereas the dual task required the athlete to walk and complete a cognitive test at the same time. Inertial measurement sensors were worn by the patient during this test, but the main measurement used in the evaluation process was walking speed. In addition, the modified BESS test was completed which meant the athlete's balance was only conducted on a hard surface.

Results showed no significant differences between groups and the duration of time to symptom resolution. Symptom scores were similar at the initial concussion evaluation. However, when the time between initial injury and when the assessment was taken was calculated into the equation, the findings showed that the exercise group reported less symptoms than the no exercise group at both the initial evaluation and follow-up appointment. Also, the exercise group performed better at the dual task then the no exercise group. The single task speed, cognitive accuracy, and modified BESS test were not significantly different between groups. These findings prove that athletes who participated in aerobic exercise following a concussion did not experience detrimental results. Rather those in the exercise group experienced lower symptom scores. Therefore, completing exercise within the first week of sustaining a concussion is safe and acceptable to recommend (Howell et al., 2020).

Howell et al. (2016) looked at the relationship physical activity has on the duration of symptoms following a sports-related concussion. Duration of symptoms was defined as the days between the date of injury and the last day the patient experienced symptoms. Included in his study were 364 patients between the ages of eight and 27 years old who reported to a speciality concussion clinic. Of the 364 participants, 222 were male. Also, all participants had to be diagnosed with a concussion within 21 days of injury. All concussions were either sports related or had a similar mechanism of injury to a SRC. If the patient fit all of the inclusion criteria and consented to be part of the study, they completed forms asking about their demographics and other clinical information. Once those were completed, they were instructed to complete a symptom inventory called the PCSS. For younger patients, parents were allowed to help complete these forms.

Physical activity was evaluated at the first visit as well as at follow-up appointments (Howell et al., 2016). At the first visit, participants were asked if they had been exercising since their injury. This was asked to see how physical activity can affect recovery from a concussion in acute situations. At the follow-up appointments, patients were asked about their physical activity as well as their cognitive activity. To objectify what the patient was reporting, scales were used based off of the return-to-play protocol developed at the 4th concussion conference in Zurich. All data was self-reported by the patient.

Results showed the mean PCSS score at the first visit was about 34, and the total mean symptom duration was approximately 49 days. If the patient presented with a high PCSS score

or were female, they were more likely to have a longer duration of symptoms, but the level of physical activity after the sustained concussion was not associated with a longer recovery. Furthermore, patients between the ages of 13 and 18 years saw decreased symptoms duration when partaking in higher physical activity levels. This outcome was not found in the younger group or older age groups indicating physical activity treatment may affect symptoms differently based on the patient's stage of development. Overall, this study found that "physical activity may not be universally detrimental to the recovery of concussion symptoms" (Howell et al., 2016, p. 1045).

Lawrence, Richards, Comper and Hutchison (2018) were determined to find if aerobic activity after sustaining a concussion would help with a quicker return-to-play and return-to-school. Data of 253 concussions were collected from a sports medicine clinic between October 2016 and December 2017. To be included in this study, the concussion injury had to be sports-related and presented to the clinic within 14 days. All ages, sports, and skill levels were acceptable. The study focused on the number of days between the injury date and when aerobic activity was introduced. The activity could be self-initiated or physician prescribed. Also, patient demographics, concussion history, and conditions common with prolonged recovery were collected.

Results showed through statistical analysis that the sooner patients initiated aerobic activity the sooner they were able to return-to-play and return-to-school (Lawrence et al., 2018). Each day that aerobic activity was delayed, the greater the patient was likely to experience a

longer recovery. "Initiating aerobic exercise at three and seven days following injury was associated with a respective 36.5% and 73.2% reduced probability of faster full return to sport compared to within one day; and a respective 45.9% and 83.1% reduced probability of faster full return to school/work" (Lawrence et al., 2018, p. 1). Also, previous concussion history, the severity of symptoms, and loss of consciousness all negatively impacted recovery duration. In conclusion, athletes who are diagnosed with a SRC and participate in early aerobic activity are associated with a quicker recovery which proves starting aerobic activity within one week of injury is safe and beneficial.

Silverberg and Otamendi (2019) conducted a study with 146 participants to evaluate what physicians are advising for concussion treatment when it comes to rest or activity and how the patient responds to the recommendation. He also looked at how clinical outcomes were affected based on the advice given and if certain patient characteristics changed the advice given. Participants from two separate clinics in Canada completed the Rivermead Post-Concussion Symptom Questionnaire, PHQ-9, GAD-7, and a questionnaire specially designed for this study. In the questionnaire for this specific study, information about the patient, their injury as well as their recovery was gathered. It also inquired if they were recommended by a health care practitioner to rest for more than post-concussion. The participants also documented whether they were fully returned to work or school, partially returned to work or school, on leave, or if none of the options fit their situation. Participants in this study were between the ages of 18 and 60 years old, were diagnosed with a concussion within the past three months, spoke English, and could access primary health care.

Results from the study by Silverberg and Otamendi showed 82.9% of the participants were advised to rest for more than two days. The recommendation was not based on patient demographics such as gender, race, or previous concussion history. Furthermore, participants who were in the rest group took longer to return to work as 64.5% of patients in the rest group were still on leave from work or school at the time of intake whereas only 40% of patients in the control group were still on leave at that time. The rest group was also behind the control group in the number of patients who had partially returned for fully returned to work or school by the intake appointment. Evaluation of concussion symptoms, anxiety, and depression did not show significant differences. Recommendations following the findings of this study suggest to focus more on individualizing patient care and discontinuing the general recommendation of rest for longer than two days after sustaining a concussion to match practice with current literature and guidelines (Silverberg & Otamendi, 2019).

Critique of Strengths and Weaknesses

Throughout the appraisal of the above 25 articles, many strengths and weaknesses were identified. One important strength was all articles, except for one, were of good or excellent quality. Another strength was the uniformity of tests used to identify the outcomes of the studies. For example, 11 of the articles used the PCSS score to evaluate patient symptoms. In addition, the research findings were consistent as 23 of the 25 studies either recommended subthreshold activity, demonstrated that it was safe, found participating in an aerobic intervention was not more detrimental than rest, or concluded rest to be harmful in concussion rehabilitation. Also, all research was published within the past 8 years.

Weaknesses of this study were present too. Small population sizes were a common finding, and the majority of the studies were under 200 participants. Only 4 articles had greater population sizes including Lawrence et al. (2018) at 253, Howell et al. (2016) at 364, Dobney et al. (2018) at 677, and Grool et al. (2016) at 2413. More studies with larger sample sizes would help findings be of greater significance. Another weakness was the low number of systematic reviews and its poor integration of RCTs. Both quantity as well as quality of RCTs were minimal within the systematic reviews. Nonetheless, due to the preliminary nature of this topic, these weaknesses were understandable.

Summary

Twenty-five research articles were critically reviewed to determine whether subthreshold aerobic activity or rest provided a more effective treatment for symptom reduction and time to return-to-play in patients who were diagnosed with a concussion. All articles were categorized into level I, II, II, or IV according to the "Hierarchy of Evidence for Intervention Studies" chart (Fineout-Overholt et al., 2010). The articles were assessed for quality and represented levels of fair, good, and excellent according to the PEDro scale, CASP questionnaire and series of four questions (The George Institute for Global Health, n.d.; Raab & Craig, 2016). Twenty-three of the 25 studies either recommended subthreshold activity, demonstrated that it was safe, found participating in an aerobic intervention was not more detrimental than rest, or concluded rest to be harmful in concussion rehabilitation. Three studies recommended rest as a quality intervention for concussion treatment, but none of those studies compared rest to subthreshold aerobic activity. Strict rest for prolonged periods of time was not recommended by any article. One article is represented in both categories due to split results depending on the population. Though the total article count may appear to be 26, only 25 articles were reviewed.

Chapter IV: Discussion, Implications, and Conclusions

The purpose of this review is to determine whether rest or subthreshold aerobic activity provides quicker symptom resolution and return-to-play in comparison to rest for patients diagnosed with a sports-related concussion. After critical analysis was conducted on 25 scholarly articles in chapter three, this fourth and final chapter will address the practice question. In addition, gaps and trends found throughout the research, implications to athletic training practice, and recommendations for further research will be discussed.

Literature Synthesis

The focus of the Critical Review of the Literature has been to answer the question, "Do patients, who have been diagnosed with a sports-related concussion, have decreased symptoms and a quicker return-to-play when subthreshold aerobic exercise is used early in their treatment versus rest alone?" A total of 25 articles were reviewed and appraised in order to answer the question. The following paragraphs will synthesize all 25 articles into three categories: subthreshold aerobic exercise is beneficial for concussion treatment, subthreshold aerobic exercise is neither beneficial or detrimental as a concussion treatment, or recommendation for concussion treatment is rest.

Out of the 25 articles, 15 directly tested and supported subthreshold aerobic activity as a concussion treatment. The *excellent* quality articles in this category include Kurowski et al. (2017), and Leddy et al. (2019). The first study, out of these two, discovered subthreshold aerobic activity was more beneficial than a stretching group for patients experiencing a prolonged recovery (Kurowski et al., 2017). Then, Leddy et al. in 2019 conducted a study which was pivotal to the understanding of subthreshold aerobic activity because it was the first study to

use specific parameters to verify the use of subthreshold aerobic activity within the first week of a sustained concussion. All the other studies in this group were of *good* quality and very similar to each other. Of the remaining 13 articles that supported subthreshold aerobic activity, six articles found the intervention reduced symptom severity (Lal et al., 2018; Chrisman et al., 2019; Micay et al., 2018; Dobney et al., 2018; Howell et. al, 2020 & Howell et al., 2016). Two articles found cognition was positively impacted due to subthreshold aerobic activity. Mychasiuk et al. (2016) concluded telomere length and gene expressions found in the hippocampus and prefrontal cortex reduced recovery time in rats who were in the exercise group. Gladstone et al. (2019) saw improvements in learning and memory scores and believes it was due to an increase in nerve growth factor and vascular endothelial growth factor when the patients exercised. Four articles conducted their research with the focus on how patients respond to subthreshold aerobic activity within the first week and found activity within one week was beneficial for recovery (Mychasiuk et al., 2016; Willer et al., 2019; Lawrence et al., 2018; Grool et al., 2016). Additionally, one study saw benefits of subthreshold aerobic activity based on evaluation of multiple studies (Schneider et al., 2017) and another study concluded subthreshold aerobic activity was helpful for diagnostics as well as general management of concussion (Cordingley et al., 2016).

Seven of the 25 articles did not explicitly find a conclusion to whether or not subthreshold aerobic activity was beneficial. Instead, these articles looked at the safety of subthreshold aerobic activity, determined standard care was better than rest, or concluded rest was not entirely helpful. Five articles were of *good* equality, one was *fair* and one was *excellent*. Leddy et al. (2018) discovered the BCTT was safe to use in order to prescribe subthreshold aerobic activity. This article was of *excellent* quality. Maerlender et al. (2015) also concluded subthreshold aerobic activity was safe to administer. Teel et al. (2018) conducted a study with healthy individuals and had them complete various concussion assessments such as VOMS, subthreshold aerobic activity, and BESS test. Overall, they found the outcomes of the tests were not impacted in any way with healthy individuals which meant no changes needed to be made to scoring of such assessments, and the assessments did not cause any worsening of symptoms. Furthermore, studies by Thomas et al. (2015) and Sufrinko et al. (2017) advocated for standard care instead of prolonged or strict rest. Sufrinko et al. (2017) also added that only standard care for those with symptoms of a concussion was beneficial and not for those with signs of a concussion. The article by Sufrino et al. (2017) was the one article in this section with *fair* quality. Similarly, studies by Gibson et al. (2013), McLeod et al. (2017), and Silverberg and Otamendi (2019) cautioned against too much rest in concussion treatment.

Lastly, three of the 25 articles stated rest was a recommended treatment for concussion rehabilitation. Those studies include Moser et al. (2012), Moser et al. (2015), and Sufrinko et al. (2017). The first two studies are based on each other and came to similar outcomes. The study completed by Moser et al. (2012) found cognitive and physical rest was beneficial for concussion treatment no matter the stage of recovery the athlete was in. The second study, completed by Moser et al. (2015), found one week of rest was helpful for concussion treatment to help with symptom reduction and cognitive functioning in adolescents. Both of these studies are of *good* quality but are also some of the oldest articles included in this Critical Review of the Literature. The last article that advocated for rest is Sufrinko et al. (2017). In this study, the authors looked at two groups of patients diagnosed with a concussion. The first group, as mentioned above, was

the symptoms group. The second group was the signs group. Those in the signs group benefited from extended rest; therefore, the recommendation was split for this *fair* quality article.

Current Trends and Gaps in Literature

Throughout this study, multiple trends and gaps were identified. First, the years in which the included articles were conducted is a trend as 23 of the 25 articles were published between the years 2015 and 2020. This shows that the topic of active concussion treatment is heavily being studied and is a relatively new idea. Second, the tests used to assess if subthreshold aerobic activity was beneficial for concussion treatment were similar across the literature. Specifically, PCSS, PCSI, and PCS were used to objectify symptoms, and the ImPACT test was used primarily for evaluating cognitive functionings such as visual memory, verbal memory, and reaction time. However, part of the ImPACT test includes a symptom scoring component. The BCTT was used in four studies to determine an individualized exercise prescription for patients. Another area analyzed throughout the literature was the time between injury and recovery. Though this is not a specific test, it was of particular interest in articles that evaluated rest in comparison to active rehabilitation. Third, the type of subthreshold activity completed in the studies were primarily walking, biking, or jogging via treadmill, elliptical, stationary bike, or outside paths. Fourth, defining subthreshold aerobic activity as 80% of the patient's maximal target heart rate was expressed in five *good* or *excellent* quality articles. However, Dobney et al. (2018) conducted subthreshold aerobic activity in her study at 60% of the patient's maximal target heart rate. Similarly, Teel et al. (2018) had her participants start subthreshold aerobic activity at 60% and slowly build up to a maximum of 80% of their maximal target heart rate. Whether 60% was used or 80%, it appears to have been a preference chosen by those who

developed the studies. Finally, the last trend discovered was that aerobic activity was the predominant intervention being assessed in comparison to rest. The only other interventions that surfaced were stretching protocols. When excluding systematic reviews, five articles included this additional group to their study (Chrisman et al., 2019; Gladstone et al., 2019; Kurowski et al., 2017; Leddy et al., 2019; Willer et al., 2019). The focus of this critical review was how subthreshold aerobic exercise or rest affected recovery outcomes for sports related concussions which made the finding of the stretching intervention inconsequential.

Gaps in the literature were present as well. The most common gap was the variations in sample sizes. Populations included in this study ranged from 13 to 2413 participants (Moser et al., 2015; Grool et al., 2016). Large sample sizes were rare, and only two studies exceeded 400 participants (Grool et al. 2016; Dobney et al. 2018). On average, the number of total participants in each study was under 50. This is a problem because studies of few participants are more likely to have errors and can lack depth. Larger population sizes would help with accuracy and identifying outliers. Also, not many *excellent* quality randomized control trials were found in the literature. This is not meant to discredit the many *good* quality RCTs, but *excellent* studies would increase the significance of the findings for this Critical Review of the Literature. Furthermore, the timing in which activity was administered varied significantly. Sometimes treatment would begin within the first week of injury (Micay et al., 2018) yet other times, the treatment did not start until months after the sustained concussion (Moser et al., 2012). Though the results of the treatment were being evaluated, discrepancies of when to initiate the treatment remain unresolved.

Implications for Athletic Training

One responsibility of an athletic trainer is to provide evidence-based concussion care to athletes and patients as needed. This includes an evaluation of the injury, but a treatment plan must also be incorporated. Current protocols for treatment of a sports-related concussion recommends athletes to rest for the first 24 to 48 hours post-concussion, but after that time period, the patient may begin activity as long as their symptoms do not worsen (McCrory et al., 2017). Guidelines for how that should look remain ambiguous in consensus statements, and a study by Silverberg and Otamendi (2019) suggests about 82% of practitioners are still recommending more than two days of rest. This means, either the knowledge in the consensus statement is not known by these individuals, or they are not yet convinced of the use of active rehabilitation for concussion treatment. With the ever changing and advancing medical field, continual learning is necessary as a practitioner. This includes understanding why a certain treatment is being prescribed over another and having current evidence-based research to back the reasoning. This is not only mandated for physicians but athletic trainers as well.

Another implication for athletic trainers is to consider using a subthreshold aerobic exercise protocol as explained in the included articles. Researchers have challenged the treatment of rest through their study of subthreshold aerobic activity. Many of them have used similar protocols which have been both effective and safe for concussion rehabilitation. For example, the protocol often recommends the athlete to exercise aerobically daily or almost daily for a set amount of time, usually around 15 to 20 minutes. In addition, the activity is completed at 60 to 80 percent of the patient's target heart rate. However, exertional testing is done first to see how their body responds to the intervention and if their symptoms worsen. To objectify

symptoms, a Visual Analog Scale is used. Prior to exercise, the patient reports their symptoms. If at any time during the test their symptom score increases by two or more in comparison to their prior to exercise symptom score, they must stop activity (Leddy et al., 2019). Otherwise, the test is terminated at 20 minutes. Once the BCTT is finished, the patient's heart rate when the test is terminated is calculated to 80% and becomes the individualized program boundary for their home exercise program. When the patient completes subthreshold aerobic activity at home, the expectation is to stop exercise if a 2-point symptom increase occurs. This is to ensure symptoms are not being exacerbated. Throughout treatment, the patient continues to report how they are feeling to the health care provider and advancements in their treatment are made as the patient improves. When the two interventions, rest and subthreshold aerobic activity, are compared to each other, the patients who participated in subthreshold aerobic activity improved quicker in terms of their symptom scores and duration of injury. Also, two studies found rest made symptoms worse before getting better (Thomas et al., 2015; Sufrinko et al., 2017). A few articles advocate for rest, but none of those articles were comparing rest directly to a subthreshold aerobic activity protocol.

The use of subthreshold aerobic activity is safe and beneficial, and the literature is encouraging athletic trainers and physicians managing concussions to adopt this intervention. It is helpful in patients as soon as a few days after injury and for those who have been struggling for months. Speciality equipment such as treadmills, stationary bikes, and fitness watches were primarily used in the studies evaluated, but walking in a safe, controllable environment works as well. Most everyone has access to walking, making subthreshold aerobic activity a practical and affordable intervention to recommend to all. There are few to no reasons why this intervention should not be introduced and used within athletic training settings to help athletes recover from a sports-related concussion.

Recommendations for Future Research

After summarizing and reviewing 25 research articles, gaps throughout the studies were found which prompted ideas and recommendations for future research. The most common suggestion is to conduct studies with larger sample sizes. More people involved in studies means more accurate findings and suggestions. It also means other trends can be discovered such as differences between gender, race, or age (Micay et al., 2018; Lal et al., 2018). Also, more *excellent* quality randomized control trials are recommended for future research because they have a less likelihood of biases (Schneider et al., 2017). Out of the 25 articles included in this study, 11 were RCTs. Only three additional articles were systematic reviews. This means just over half of the research was in the top two tiers of the "Hierarchy of Evidence for Intervention Studies" chart (Fineout-Overholt et al., 2010). This shows that the general quality of this research is good, but it still has areas for improvement.

Furthermore, the timing of when the aerobic activity was initiated following the concussion injury needs to be the focus of future research. Some of the studies had patients begin aerobic activity within the first week of injury, but other studies had patients who presented symptomatic for months participate in their study too. Since there was great variability between injury and initiation of subthreshold aerobic activity, no implication could be made on when the most optimal time is to start subthreshold aerobic activity following injury. Also, very few articles address subthreshold aerobic activity directly following the 24 to 48-hour rest period (McLeod et al., 2017; Schneider et al., 2017; Micay et al., 2018; Richards, &

Hutchison, 2018). Answers to the timing of when to implement activity has the potential to significantly change current concussion protocol; however, more high-quality studies are needed.

Conclusion

The findings of this Critical Review of the Literature validate the use of subthreshold aerobic activity as a treatment more effective than rest for patients diagnosed with a sports-related concussion. To come to this conclusion, 25 scholarly articles were analyzed using the Bethel University Graduate Nursing Program matrix format and were further evaluated with use of the PEDro Scale, CASP Questionnaire, or a series of four questions (The George Institute for Global Health, n.d.; Raab & Craig, 2016). Twenty-three of the 25 studies either recommended subthreshold activity, demonstrated that it was safe, found participating in an aerobic intervention was not more detrimental than rest, or concluded rest to be harmful in concussion rehabilitation. Three studies recommended rest as a quality intervention for concussion treatment. Due to one article being in favor of both rest and subthreshold aerobic activity, the total number of articles may appear to be 26, but only 25 articles were reviewed. Overall, these studies are challenging current concussion rehabilitation protocol which is exciting as the research indicates subthreshold aerobic activity is benefitting patients by reducing symptoms and decreasing the duration of injury in a more positive way than rest.

References

- 6th International Consensus Conference on Concussions. (2020). Retrieved from http://www.concussionconference.org/.
- Broglio, S., Cantu, R., Gioia, G., Guskiewicz, K., Kutcher, J., Palm, M., & Valovich Mcleod, T.
 (2014). National Athletic Trainers' Association position statement: Management of sport concussion. *Journal of Athletic Training*, 49(2), 245-65. doi: 10.4085/1062-6050-49.1.07
- Chrisman, S. P. D., Whitlock, K. B., Mendoza, J. A., Burton, M. S., Somers, E., Hsu, A., ... Rivara, F. P. (2019). Pilot randomized controlled trial of an exercise program requiring minimal in-person visits for youth with persistent sport-related concussion. *Frontiers in Neurology*, *10*(JUN), 1–10. doi: 10.3389/fneur.2019.00623
- Cordingley, D., Girardin, R., Reimer, K., Ritchie, L., Leiter, J., Russell, K., & Ellis, M. J. (2016). Graded aerobic treadmill testing in pediatric sports-related concussion: Safety, clinical use, and patient outcomes. *Journal of Neurosurgery: Pediatrics*, *18*(6), 693–702. doi: 10.3171/2016.5.PEDS16139
- Dobney, D. M., Grilli, L., Kocilowicz, H., Beaulieu, C., Straub, M., Friedman, D., & Gagnon, I.
 J. (2018). Is there an optimal time to initiate an active rehabilitation protocol for concussion management in children? A case series. *Journal of Head Trauma Rehabilitation*, *33*(3), E11–E17. doi: 10.1097/HTR.00000000000339
- Fineout-Overholt, E., Melnyk, B., Stillwell, S. B. & Williamson, K. M. (2010). Evidence-based practice step by step: Critical appraisal of the evidence: Part I. *American Journal* of Nursing, 110(7), 47-52. doi: 10.1097/01.NAJ.0000383935.22721.9c.

The George Institute for Global Health. (n.d.). Physiotherapy Evidence Database: PEDro scale. Retrieved from http://www.pedro.org.au/english/downloads/pedro-scale/

- Gibson, S., Nigrovic, L. E., O'Brien, M., & Meehan, W. P. (2013). The effect of recommending cognitive rest on recovery from sport-related concussion. *Brain Injury*, *27*(7–8), 839–842. doi: 10.3109/02699052.2013.775494
- Gladstone, E., Narad, M. E., Hussain, F., Quatman-Yates, C. C., Hugentobler, J., Wade, S. L., ...
 Kurowski, B. G. (2019). Neurocognitive and quality of life improvements associated with aerobic training for individuals with persistent symptoms after mild traumatic brain injury:
 Secondary outcome analysis of a pilot randomized clinical trial. *Frontiers in Neurology*, *10*(September), 1–9. doi: 0.3389/fneur.2019.01002
- Grool, A., Aglipay, M., Momoli, F., Meehan, W., Freedman, S., Yeates, K., . . . Zemek, R.
 (2016). Association between early participation in physical activity following acute concussion and persistent postconcussive symptoms in children and adolescents. *JAMA*, *316*(23), 2504-2514. doi: 10.1001/jama.2016.17396
- Gupta, A., Summerville, G., & Senter, C. (2019). Treatment of acute sports-related concussion. *Current Reviews in Musculoskeletal Medicine*, *12*(2), 117-123. doi: 10.1007/s12178-019-09545

- Haider, M. N., Leddy, J. J., Wilber, C. G., Viera, K. B., Bezherano, I., Wilkins, K. J., ... &
 Willer, B. S. (2019). The predictive capacity of the buffalo concussion treadmill test after sport-related concussion in adolescents. *Frontiers in Neurology*, *10*(395), 1-7.
 doi: 10.3389/fneur.2019.00395
- Hariohm, K., Prakash, V., & Saravankumar, J. (2015). Quantity and quality of randomized controlled trials published by Indian physiotherapists. *Perspectives in Clinical Research*, 6(2), 91–97. doi: 10.4103/2229-3485.154007
- Howell, D. R., Brilliant, A. N., Oldham, J. R., Berkstresser, B., Wang, F., & Meehan, W. P. (2020). Exercise in the first week following concussion among collegiate athletes:
 Preliminary findings. *Journal of Science and Medicine in Sport*, *23*(2), 112–117.
 doi: 10.1016/j.jsams.2019.08.294
- Howell, D. R., Mannix, R. C., Quinn, B., Taylor, J. A., Tan, C. O., & Meehan, W. P. (2016).
 Physical activity level and symptom duration are not associated after concussion. *American Journal of Sports Medicine*, 44(4), 1040–1046.

doi: 10.1177/0363546515625045

- Kurowski, B. G., Hugentobler, J., Quatman-Yates, C., Taylor, J., Gubanich, P. J., Altaye, M., & Wade, S. L. (2017). Aerobic exercise for adolescents with prolonged symptoms after mild traumatic brain injury: An exploratory randomized clinical trial. *The Journal of Head Trauma Rehabilitation*, 32(2), 79–89. doi: 10.1097/HTR.0000000000238
- Lal, A., Kolakowsky-Hayner, S., Ghajar, J., & Balamane, M. (2018). The effect of physical exercise after a concussion: A systematic review and meta-analysis. *The American Journal of Sports Medicine*, 46(3), 743-752. doi: 10.1177/0363546517706137

Lawrence, D.W., Richards, D., Comper, P., & Hutchison, M.G. (2018). Earlier time to aerobic exercise is associated with faster recovery following acute sport concussion. *PLoS ONE*, *13*(4): e0196062. doi: 10.1371/journal.pone.0196062

Leddy, J. J., Haider, M. N., Ellis, M. J., Mannix, R., Darling, S. R., Freitas, M. S., ... Willer, B. (2019). Early subthreshold aerobic exercise for sport-related concussion: A randomized clinical trial. *JAMA Pediatrics*, *173*(4), 319–325.
doi: 10.1001/jamapediatrics.2018.4397

- Leddy, J. J., Hinds, A. L., Miecznikowski, J., Darling, S., Matuszak, J., Baker, J. G., ... Willer,
 B. (2018). Safety and prognostic utility of provocative exercise testing in acutely
 concussed adolescents: A randomized trial. *Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 28*(1), 13–20.
 doi: 10.1097/JSM.00000000000431
- Maerlender, A., Rieman, W., Lichtenstein, J., & Condiracci, C. (2015). Programmed physical exertion in recovery from sports-related concussion: A randomized pilot study.
 Developmental Neuropsychology, 40(5), 273–278. doi: 10.1080/87565641.2015.1067706
- McCrory, P., Meeuwisse, W., Dvorák, J., Aubry, M., Bailes, J., Broglio, S., ... Cantu, R. (2017).
 Consensus statement on concussion in sport the 5th international conference on concussion in sport held in Berlin, October 2016. *British Journal of Sports Medicine,* 51, 838-847. doi: 0.1136/bjsports-2017-097699
- McLeod, T. C., Lewis, J. H., Whelihan, K., & Bacon, C. E. (2017). Rest and return to activity after sport-related concussion: A systematic review of the literature. *Journal of Athletic Training*, *52*(3), 262–287. doi: 10.4085/1052-6050-51.6.06

- Micay, R., Richards, D., & Hutchison, M. G. (2018). Feasibility of a postacute structured aerobic exercise intervention following sport concussion in symptomatic adolescents: A randomised controlled study. *BMJ Open Sport & Exercise Medicine*, 4(1), e000404.
 doi: 10.1136/bmjsem-2018-000404
- Moser, R. S., Glatts, C., & Schatz, P. (2012). Efficacy of immediate and delayed cognitive and physical rest for treatment of sports-related concussion. *Journal of Pediatrics*, *161*(5), 922–926. doi: 10.1016/j.jpeds.2012.04.012
- Moser, R. S., Schatz, P., Glenn, M., Kollias, K. E., & Iverson, G. L. (2015). Examining prescribed rest as treatment for adolescents who are slow to recover from concussion. *Brain Injury*, 29(1), 58–63. doi: 10.3109/02699052.2014.964771
- Mychasiuk, R., Hehar, H., Ma, I., Candy, S., & Esser, M. (2016). Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression. *European Journal of Neuroscience, 44*(7), 2407-2417. doi: 10.1111/ejn.13360
- National Athletic Trainers' Association (NATA). (2019). Athletic Training. Retrieved from https://www.nata.org/about/athletic-training
- Raab, S., & Craig, D. I. (2016). Evidence-based practice in athletic training. Champaign, IL: Human Kinetics.
- Register-Mihalik, J., Vander Vegt, K., Cools, C., & Carnerio, B. (2018). Factors associated with sport-related post-concussion headache and opportunities for treatment. *Current Pain and Headache Reports, 22*(11), 1-8. doi: 10.1007/s11916-018-0724-2

- Ritter, K. G., Hussey, M. J., & Valovich McLeod, T. C. (2019). Subsymptomatic aerobic exercise for patients with postconcussion syndrome: A critically appraised topic. *Journal of Sport Rehabilitation*, 28(2), 211-216. doi: 10.1123/jsr.2017-0159
- Schneider, K. J., Leddy, J. J., Guskiewicz, K. M., Seifert, T., McCrea, M., Silverberg, N. D., ...
 Makdissi, M. (2017). Rest and treatment/rehabilitation following sport-related
 concussion: A systematic review. *British Journal of Sports Medicine*, *51*(12), 930–934.
 doi: 10.1136/bjsports-2016-097475
- Silverberg, N. D., & Otamendi, T. (2019). Advice to rest for more than 2 days after mild traumatic brain injury is associated with delayed return to productivity: A case-control study. *Frontiers in Neurology*, *10*(APR), 1–6. doi: 10.3389/fneur.2019.00362
- Sufrinko, A. M., Kontos, A. P., Apps, J. N., McCrea, M., Hickey, R. W., Collins, M. W., & Thomas, D. G. (2017). The effectiveness of prescribed rest depends on initial presentation after concussion. *Journal of Pediatrics*, *185*, 167–172. doi: 10.1016/j.jpeds.2017.02.072
- Teel, E. F., Register-Mihalik, J. K., Appelbaum L. G., Battaglini, C. L., Carneiro,
 K. A., Guskiewicz, K. M., . . . Mihalik, J. P., (2018). Randomized controlled
 trial evaluating aerobic training and common sport-related concussion outcomes in
 healthy participants. *Journal of Athletic Training*, *53*(12), 1156-1165.
 doi: 10.4085/1062-6050-7-18
- Thomas, D. G., Apps, J. N., Hoffmann, R. G., Mccrea, M., & Hammeke, T. (2015). Benefits of strict rest after acute concussion: A randomized controlled trial. *Pediatrics*, 135(2), 213–223. doi:10.1542/peds.2014-0966

Willer, B. S., Haider, M. N., Bezherano, I., Wilber, C. G., Mannix, R., Kozlowski, K., & Leddy, J. J. (2019). Comparison of rest to aerobic exercise and placebo-like treatment of acute sport-related concussion in male and female adolescents. *Archives of Physical Medicine and Rehabilitation*, 100(12), 2267–2275. doi: 10.1016/j.apmr.2019.07.003

Appendix A: Literature Review Matrix

Systematic Reviews

Source: Lal, A., Kolakowsky-Hayner, S., Ghajar, J., & Balamane, M. (2018). The effect of physical exercise after a concussion: A systematic review and meta-analysis. *The American Journal of Sports Medicine*, *46*(3), 743-752. doi: 10.1177/0363546517706137

<i>b</i> 1	× //	-/52. doi: 10.11///0363546:	
Design	Sample/	Design Instruments	Results
Methodology/	Setting	This study evaluated	Exercise decreased the
Purpose	The search	comprehensive	PCSS score (mean
Systematic review	generated	systematic reviews and	difference, -13.06; 95%
and meta-analysis	1096 studies.	meta-analysis on the role	CI, -16.57 to -9.55 ; <i>P</i> \
Purpose:	Of these, 14	of physical exercise on	$.00001; I^2 = 44\%),$
To conduct a	studies (5	multiple outcomes in	percentage of patients
systematic review	RCTs, 1	patients with	with symptoms of a
and meta-analysis on	propensity	concussions, including	concussion (risk ratio,
the role of physical	score	the PCSS, Immediate	0.74; 95% CI, 0.63 to
exercise on different	matching	Post-Concussion	$0.86; P = .0001; I^2 = 0\%),$
outcomes in patients.	study, 3	Assessment and	and days off work (17.7
Method:	cohort	Cognitive Testing	days vs 32.2 days,
A search of 5	studies, and 5	(ImPACT), and balance,	respectively; $P \setminus .05$)
databases and a hand	before and	and graded the evidence	compared with control.
search of a few	after studies)	using the Grading of	Exercise improved the
articles were	met our	Recommendations	reaction time component
performed. Trial	inclusion	Assessment, Develop-	of the Immediate
registries were	criteria.	ment and Evaluation	Post-Concussion
reviewed, and		(GRADE) process.	Assessment and Cognitive
authors of multiple			Testing (ImPACT) score
studies were	Level: I		without affecting the
contacted to find			Balance Error Scoring
additional published	Quality:		System (BESS) score and
or unpublished	Good		neuropsychological
studies. Randomized			parameters. The Grading
controlled trials			of Recommendations
(RCTs), cohort			Assessment, Development
studies, and before			and Evaluation (GRADE)
and after studies			scores were moderate for
evaluating the effect			the PCSS, symptoms,
of physical exercise,			ImPACT, BESS, and
compared with			neuropsychological tests.
control, in patients			
with a concussion or			
mild traumatic brain			
injury were included.			
Recommendation: Ph	nysical exercise a	appears to improve the PCSS	S score and symptoms in
patients with a concuss	ion.		

Source: McLeod, T. C., L	Source: McLeod, T. C., Lewis, J. H., Whelihan, K., & Bacon, C. E. (2017). Rest and return to					
activity after sport-related						
Athletic Training, 52(3), 2	-		v			
Design Methodology/	Sample/	Design Instruments	Results The main			
PurposeSystematic	Setting40 articles	Articles were	findings suggest that			
Review	from which data	categorized	rest is underused by			
Purpose:	were extracted	according to the	health care providers,			
To systematically	that were	clinical question of	recommendations for			
review the literature	synthesized in the	interest. The study	rest are broad and not			
regarding rest and return	results. These	design; patient or	specific to individual			
to activity after	consisted of 9	participant sample;	patients, an initial			
sport-related	studies of use of	instrumentation or	period of moderate			
concussion.	rest, 10 studies of	interventions used;	physical and cognitive			
Method: The study	rest effectiveness,	outcome measures;	rest (ex. limited			
design, patient or	17 studies	main results; and	physical activity and			
participant sample,	evaluating	conclusions were	light mental activity)			
instrumentation or	compliance with	extracted, as	may improve outcomes			
interventions used,	guidelines, and 4	appropriate, from	during the acute			
outcome measures,	studies of	each article and	post-injury phase,			
main results, and	return-to-activity	entered on a standard	significant variability in			
conclusions were	outcomes.	data-collection form.	the use of assessment			
extracted, as			tools and compliance			
appropriate, from each			with recommended			
article and entered on a			return-to- activity			
standard data-collection	Level: 1		guidelines exists.			
form. Articles were						
categorized into groups Quality: Good						
-	based on their ability to					
address one of the						
primary clinical						
questions of interest:						
use of rest, rest						
effectiveness,						
compliance with						
recommendations, or						
outcome after graded						
return-to activity						
progression.						
Recommendation: With						
balancing rest and active	treatments. Although	our findings in this rev	iew highlight that too			

much activity can hinder recovery, they also suggest that strict rest can do the same.

Source: Schneider, K. J., Leddy, J. J., Guskiewicz, K. M., Seifert, T., McCrea, M., Silverberg, N. D., ... Makdissi, M. (2017). Rest and treatment/rehabilitation following sport-related concussion: A systematic review. *British Journal of Sports Medicine*, *51*(12), 930–934. doi: 10.1136/bjsports-2016-097475

Design Methodology/	Sample/ Setting	Design Instruments	Results	
Purpose	Twenty-eight studies	Two authors	A brief period	
Systematic review	met the inclusion	independently	(24–48 hours) of	
Purpose:	criteria (9 regarding	extracted data for	cognitive and	
To evaluate the evidence	the effects of rest	each of the articles	physical rest is	
related to two questions:	and 19 evaluating	and independently	appropriate for	
(1) What is the evidence	active treatment).	evaluated the risk of	most patients.	
that rest is beneficial	The methodological	bias using the Downs	Following this,	
following concussion,	quality of the	and Black (DB)	patients should be	
and is there an optimal	literature was	checklist for	encouraged to	
duration of rest? (2) What	limited; only five	methodological	gradually increase	
is the evidence that active	randomised	quality. Data were	activity. The exact	
treatment and	controlled trials	extracted using	amount and	
rehabilitation is effective	(RCTs) met the	standardised tables	duration of rest are	
for athletes who have	eligibility criteria.	and included the	not yet well	
experienced SRC?	Those RCTs	following: study	defined and	
Method:	included rest,	design, participants	require further	
The initial search terms	cervical and	(sample size, age, sex,	investigation. The	
used in this systematic	vestibular	sampling methods),	data support	
review, the inclusion	rehabilitation,	treatment (frequency,	interventions	
criteria, exclusion criteria	subsymptom	inten- sity, type,	including cervical	
and database selection	threshold aerobic	timing/duration),	and vestibular	
were generated and	exercise and	outcome measures,	rehabilitation and	
reviewed by the author	multifaceted	key findings (point	multifaceted	
group. The draft	collaborative care.	estimates with 95%	collaborative care.	
MEDLINE search		confidence intervals)		
strategy was then sent to	Level: I	and level of evidence		
an expert librarian (KAH)		(per Oxford Centre		
to ensure its completeness	Quality: Good	for Evidence Based		
and accuracy. This was		Medicine).		
done according to the				
PRESS Guideline				
Statement using the				
CADTH Peer Review				
Checklist. Extracted data				
were synthesized				
qualitatively.				
Decommondation. Class	w monitored subsymmetry	here the submaring	l avaraisa may ba	
Recommendation: Closely monitored subsymptom threshold, submaximal exercise may be of benefit				

Randomized Control Trials

Source: Chrisman, S. P. D., Whitlock, K. B., Mendoza, J. A., Burton, M. S., Somers, E., Hsu, A., ... Rivara, F. P. (2019). Pilot randomized controlled trial of an exercise program requiring minimal in-person visits for youth with persistent sport-related concussion. *Frontiers in Neurology*, *10*(JUN), 1–10. doi: 10.3389/fneur.2019.00623

Design Methodology/	Sample/	Design Instruments	Results
Purpose	Setting	moderate-to-vigorous	Thirty-two subjects
Pilot Randomized Control	youth 12–18	physical activity pre-	randomized, 30
Trial	years old	and post-intervention	completed the study (n
Purpose:	from	using accelerometry,	= 11 control, n = 19
To evaluate feasibility and	concussion	and increased goals	intervention), 57%
acceptability of a	clinics at	weekly via phone	female. Youth and
sub-threshold exercise	Seattle	contact. We examined	parents reported
program with minimal	Children's	feasibility and	enjoying participating
in-person visits to treat	Hospital and	acceptability using	in the study and
youth with SRC, and	an online	qualitative interviews.	appreciated the
explore efficacy for	portal over a	We used exponential	structure and support,
improving concussive	period of ~9	regression to model	as well as the minimal
symptoms, health-related	months.	differences in	in-person visits.
quality of life, and		trajectory of	Exponential regression
fear-avoidance.	Level: II	concussive symptoms	modeling indicated
Method:		by experimental group,	that concussive
All subjects completed	Quality:	and linear regression to	symptoms declined
assessments at study entry	Good	model differences in	more rapidly in
and 6 weeks. The		trajectory of	intervention youth than
remainder of the		health-related quality	control ($p = 0.02$).
assessments were		of life and	Health-related quality
completed online,		fear-avoidance of pain	of life and
including weekly		by experimental group.	fear-avoidance.
assessments of symptoms.			
Accelerometer assessments			
were completed for 5–7			
days at baseline and 6			
weeks to measure			
moderate-vigorous			
physical activity (MVPA)			
in an objective manner.			
Recommendation: This stud	y indicates feasi	bility and potential benefi	t of a 6-week

Recommendation: This study indicates feasibility and potential benefit of a 6-week subthreshold exercise program with minimal in-person visits for youth with persistent concussion. Potential factors that may play a role in improvement such as fear-avoidance deserve further study.

Source: Gladstone, E., Narad, M. E., Hussain, F., Quatman-Yates, C. C., Hugentobler, J., Wade, S. L., ... Kurowski, B. G. (2019). Neurocognitive and quality of life improvements associated with aerobic training for individuals with persistent symptoms after mild traumatic brain injury: Secondary outcome analysis of a pilot randomized clinical trial. *Frontiers in Neurology*, *10*(September), 1–9. doi: 0.3389/fneur.2019.01002

Design Methodology/			Results
Design Methodology/	Sample/	Design Instruments	
Purpose	Setting	The secondary	General linear models
Pilot Randomized Clinical	Thirty	outcomes assessed	did not reveal
Trial	adolescents	included	statistically significant
Purpose:	between the	neurocognitive	differences between
To report secondary	ages of 12 and	changes in fluid and	groups. Within group
neurocognitive and	17 years who	crystallized	analyses using paired
quality of life outcomes	sustained a	age-adjusted	t-tests demonstrated
for management of	mTBI and had	cognition using the	improvement in
prolonged symptoms after	between 4 and	National Institutes of	age-adjusted fluid
a mTBI in adolescents.	16 weeks of	Health (NIH) toolbox	cognition $[t(13) = 3.39,$
Method:	persistent post-	and self and	p = 0.005, Cohen's $d =$
Week 0- participants were	concussive	parent-reported total	0.61] and crystallized
evaluated for eligibility	symptoms.	quality of life using	cognition[t(13) = 2.63,
and completed an aerobic		the Pediatric Quality	p = 0.02, Cohen's $d =$
bike test. Week 1-	Level: II	of Life Inventory.	0.70] within the aerobic
participants were			training group but no
randomized into groups.	Quality: Good		significant
The aerobic training			improvement within the
group repeated the			stretching group. Paired
aerobic cycling test to			t-tests demonstrated
create an exercise			significant
program.			improvement in both
Participants in the			self-reported and
stretching group			parent-reported total
completed a full- body			quality of life measures
stretching program. Both			in the aerobic training
groups followed up on a			group.
weekly basis, and all			
participants in the			
completed			
6 weeks of training.			

Recommendation: This exploratory RCT supports that sub- symptom exacerbation aerobic training may potentially have positive effects on the neurocognitive recovery of fluid cognitive abilities such as working memory and executive function skills in adolescents with persistent symptoms after mTBI. Data also suggests that improvements in quality of life may be seen with both stretching and aerobic exercise protocols in this population.

Source: Kurowski, B. G., Hugentobler, J., Quatman-Yates, C., Taylor, J., Gubanich, P. J., Altaye, M., & Wade, S. L. (2017). Aerobic exercise for adolescents with prolonged symptoms after mild traumatic brain injury: An exploratory randomized clinical trial. *The Journal of Head Trauma Rehabilitation*, *32*(2), 79–89. doi: 10.1097/HTR.0000000000238

PurposeThirty adolescentsThe primaryTwenty-two percent of eligible participantsPartially blinded, pilotbetween the ages of 12 and 17 yearsinjury symptomenrolled in the trial.RCT of sub-symptomof 12 and 17 yearsinjury symptomenrolled in the trial.exacerbation aerobicmTBI and hadassessed by theAnalysis of Variance viafull-body stretchingbetween four andadolescent'smixed model analysisprogram.16 weeks ofself-reported Postgroup by time interactionTo describe thesymptoms. 136Symptom Inventorywith self-reported PCSImethodology and reportparticipants met(PCSI) repeated forratings, indicating a greaterrating forcriteria andthe intervention.sub- symptom exacerbationaerobic training for22% enrolled inPCSI and adherenceto the full-body stretchingafter mild traumaticthe study.are also described.group (F-value = 4.11,prolonged symptomsafter mild traumaticLevel: IIare also described.group (mean (SD) times perand randomized to thesub-symptomsacerbationscoby stretchinggroup (mean (SD) times persub-symptomearobic training or training or training or training or the study.sace action of the study.after mild traumaticfull-bodyfull-body stretchinggroup (mean (SD) times perprogramsweek equeloped for bothsub-symptomsacebationafter mild traumaticfull-bodyfull-bodyfull-b	Design Methodology/	Sample/ Setting	Design Instruments	Results
RCT of sub-symptom exacerbation aerobic training compared to a full-body stretching program.of 12 and 17 years who sustained ainjury symptom improvement assessed by the adolescent's self-reported Post Symptom Inventory (PCSI) repeated for at least six weeks of the intervention.enrolled in the trial. Repeated measures Analysis of Variance via mixed model analysis demonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater ratio agreacerbation aerobic training for management of prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.of 12 and 17 years improvanted by the participants met full eligibility addiescents.enrolled in the trial. Repeated measures Analysis of Variance via mixed model analysis demonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub-symptom exacerbation aerobic training for management of prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.enrolled in the study.enrolled in the study.Quality: ExcellentLevel: IIQuality: ExcellentLevel and andomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention.enrolled in the study.enrolled in the study.Method: reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching programs were developed for bothenrolled in the study.enrolled in the study.enrolled in the study.management of participants were reassessed for eligibility and ran	Purpose	Thirty adolescents	The primary	
exacerbation aerobic training compared to a full-body stretching program.who sustained a mTBI and had between four and 16 weeks of persistentimprovement assessed by the adolescent's self-reported Post Concussion group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub-symptoms after mild traumatic brain injury (mTBI) in adolescents.Repeated measures Analysis of Variance via mixed model analysis demonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub-symptoms after mild traumatic brain injury (mTBI) in adolescents.who sustained a mTBI and had between four and participants met full eligibility 22% enrolled in the study.Repeated measures Analysis of Variance via mixed model analysis demonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub-symptom exacerbation aerobic training of management of praticipants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention.Level: IIDevalue full sub-symptom exacerbation aerobic training or full-body stretching programs were developed for bothRepeated measures Analysis of Variance via mixed model analysis addemostrated a significant group traction with self-reported PCSI rate of improvement in the sub-symptom exacerbation aerobic training or full-body stretching programs were developed for bothRepeated measures adolescent's sub-symptom stretching programswhethod: training or full-body stretc		between the ages	outcome was post	eligible participants
training compared to a full-body stretching program.mTBI and had between four and 16 weeks of persistentassessed by the adolescent's self-reported Post ConcussionAnalysis of Variance via mixed model analysis demonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub-symptom exacerbation aerobic training or method:Analysis of Variance via mixed model analysis demonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothMTBI and had between four and to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.	RCT of sub-symptom	of 12 and 17 years	injury symptom	enrolled in the trial.
full-body stretching program.between four and 16 weeks of persistentadolescent's self-reported Post Concussionmixed model analysis demonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub-symptoms arealse described.full-body exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothmixed model analysis self-reported Post Concussionfull-body stretching intervention.not exercise/ symptom stretching programs were developed for bothadolescent's sub-symptom the study.mixed model analysis demonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater at least six weeks of the intervention.full eligibility and randomized to the sub-symptom exacerbation aerobic training or full-bodyprostimately 22% enrolled in the study.parent-reported PCSI and adherence are also described.mixed model analysis demonstrated a significant group by time interaction with self-reported PCSI rating or full-body stretching intervention.motor training or full-bodyprove exacerbation aerobicadolescent's sub-symptom exacerbation aerobic training or full-bodyfull eligibility and randomized to the sub-symptomprove exacerbation aerobic training or full-bodyprove exacerbation aerobic training or full-bodyfull eligibility attretching intervention.prove exacerbation aerobicprove exacerbation aerobic training or full-bodyfull eligibility attret	exacerbation aerobic	who sustained a	improvement	Repeated measures
program.16 weeks of persistentself-reported Post Concussiondemonstrated a significant group by time interactionTo describe the methodology and report primary outcomes of an exploratory randomized clinical trial (RCT) of aerobic training for management of prologed symptoms after mild traumatic16 weeks of persistent symptoms. 136 participants met full eligibility criteria and approximately 22% enrolled in the study.Symptom Inventory (PCSI) repeated for at least six weeks of the intervention. Parent-reporteddemonstrated a significant group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub-symptom exacerbation aerobic training for the study.Devel: II adolescents.22% enrolled in the study.PCSI and adherence are also described.eroll-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exerciseMethod: Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching intervention.Quality: ExcellentFile and randomized to the sub-symptom sub-symptom sub-symptomSelf-reported PCSI rating or full-body stretching intervention.Home exercise/ stretching programs were developed for bothself-reported for at least six weeks of the intervention.self-reported PCSI ratios and adherence are also described.Method: reassessed for eligibility and randomized to the sub-symptomQuality: ExcellentFile sub-symptom sub-symptom sub-symptom sub-symptom <tr< td=""><td>U 1</td><td>mTBI and had</td><td>assessed by the</td><td>Analysis of Variance via</td></tr<>	U 1	mTBI and had	assessed by the	Analysis of Variance via
Purpose: To describe the methodology and report primary outcomes of an exploratory randomized clinical trial (RCT) of aerobic training for management of praticipants met delescents.Concussion Symptom Inventory (PCSI) repeated for at least six weeks of the intervention.group by time interaction with self-reported PCSI ratings, indicating a greater rate of improvement in the sub- symptom exacerbation aerobic training compared to the full-body stretching group (F-value = .044). Adherence to the home exerciseMethod: Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention.Quality: ExcellentMethod: Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-bodyQuality: ExcellentHome exercise/ stretching intervention. Home exercise/For the study.Home exercise/ stretching programs were developed for bothParticipants were reasses defor bothHome exercise/ stretching intervention.Home exercise/ stretching programsHome exercise/ stretching programs were developed for bothParticipants were reasses defor bothHome exercise/ stretching intervention.Participants were reasses defor eligibility attribution.Home exercise/ stretching programs were developed for bothParticipants were reasses defor eligibility attribution.Home exercise/ stretching programs were developed for bothParticipants were reasses defor eligibility attribution.Home exercise/ stretching programs were de	full-body stretching	between four and	adolescent's	mixed model analysis
To describe the methodology and report primary outcomes of an exploratory randomized clinical trial (RCT) of aerobic training for management of prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.symptoms. 136 participants met full eligibility are also described.symptom Inventory (PCSI) repeated for at least six weeks of the intervention. Parent-reported PCSI and adherence are also described.with self-reported PCSI ratings, indicating a greater rate of improvement in the sub- symptom exacerbation aerobic training compared to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exerciseMethod: Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothQuality: ExcellentSymptom Inventory (PCSI) repeated for at least six weeks of the intervention. Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-bodyWith self-reported PCSI ratings, indicating a greater at least six weeks of the intervention. Participants were rescerbation aerobic training or full-bodyHome exercise/ stretching programs were developed for bothsymptoms. 136 participantsSymptom Inventory parent-reported PCSI and adherence are also described.with self-reported PCSI aerobic training compared to the full-body stretching group (Mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.	program.	16 weeks of	self-reported Post	demonstrated a significant
methodology and report primary outcomes of an exploratory randomized clinical trial (RCT) of aerobic training for management of priminy (mTBI) in adolescents.participants met full eligibility are also described.ratings, indicating a greater rate of improvement in the sub- symptom exacerbation aerobic training compared to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exerciseMethod: Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothQuality: ExcellentPCSI and adherence are also described.ratings, indicating a greater rate of improvement in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (MEDI) in adolescents.Method: Participants were reassessed for eligibility and randomized to the sub-symptomLevel: II adolescents.Level: II adolescents.aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.	Purpose:	persistent	Concussion	group by time interaction
primary outcomes of an exploratory randomized clinical trial (RCT) of aerobic training for management of prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.full eligibility criteria and approximately 22% enrolled in the study.at least six weeks of the intervention. Parent-reported PCSI and adherence are also described.rate of improvement in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exercise programs was lower in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.	To describe the	symptoms. 136	Symptom Inventory	with self-reported PCSI
exploratory randomized clinical trial (RCT) of aerobic training forcriteria and approximately 22% enrolled in the study.the intervention. Parent-reported PCSI and adherence are also described.sub- symptom exacerbation aerobic training compared to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exercisemanagement of prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.Level: IIParent-reported PCSI and adherence are also described.sub- symptom exacerbation aerobic training compared to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exerciseMethod: Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothQuality: Excellent	methodology and report	participants met	(PCSI) repeated for	ratings, indicating a greater
clinical trial (RCT) of aerobic training for management of prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.approximately 22% enrolled in the study.Parent-reported PCSI and adherence are also described.aerobic training compared to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exerciseMethod: Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention.Quality: ExcellentParent-reported PCSI and adherence are also described.aerobic training compared to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exercise programs was lower in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.Home exercise/ stretching programs were developed for bothParent-reported PCSI and adherence are also described.aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.	primary outcomes of an	full eligibility	at least six weeks of	rate of improvement in the
aerobic training for management of prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.22% enrolled in the study.PCSI and adherence are also described.to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exercise programs was lower in the sub-symptom exacerbation aerobic training or full-body stretching intervention.Quality: ExcellentPCSI and adherence are also described.to the full-body stretching group (F-value = 4.11, p-value = .044). Adherence to the home exercise programs was lower in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.Home exercise/ stretching programs were developed for both1000000000000000000000000000000000000	exploratory randomized	criteria and	the intervention.	sub- symptom exacerbation
management of prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.the study.are also described.group (F-value = 4.11, p-value = .044). Adherence to the home exercise programs was lower in the sub-symptom exacerbation aerobic training compared to the full-body stretching ing or full-body stretching intervention.Quality: Excellentare also described.group (F-value = 4.11, p-value = .044). Adherence to the home exercise programs was lower in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.Home exercise/ stretching programs were developed for bothHome study.Home study.	clinical trial (RCT) of	approximately	Parent-reported	aerobic training compared
prolonged symptoms after mild traumatic brain injury (mTBI) in adolescents.p-value = .044). Adherence to the home exercise programs was lower in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.were developed for bothwere developed for both	aerobic training for	22% enrolled in		
after mild traumatic brain injury (mTBI) in adolescents.Level: IIto the home exercise programs was lower in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothLevel: II	0	the study.	are also described.	group (F-value = 4.11 ,
brain injury (mTBI) in adolescents.Level: IIprograms was lower in the sub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothLevel: II	prolonged symptoms			p-value = .044). Adherence
adolescents.Quality: Excellentsub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothQuality: Excellentsub-symptom exacerbation aerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.	after mild traumatic			to the home exercise
Method: Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothQuality: Excellentaerobic training compared to the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.	brain injury (mTBI) in	Level: II		programs was lower in the
Participants were reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for bothto the full-body stretching group (mean (SD) times per week = 4.42 (1.95) versus 5.85 (1.37), p < .0001) over the duration of the study.	adolescents.			sub-symptom exacerbation
reassessed for eligibility and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for both	Method:	Quality: Excellent		• •
and randomized to the sub-symptom exacerbation aerobic training or full-body stretching intervention. Home exercise/ stretching programs were developed for both	1			ş 6
sub-symptomexacerbation aerobictraining or full-bodystretching intervention.Home exercise/stretching programswere developed for both	0,000			
exacerbation aerobic training or full-body stretching intervention.the duration of the study.Home exercise/ stretching programs were developed for boththe duration of the study.				
training or full-body stretching intervention. Home exercise/ stretching programs were developed for both				
stretching intervention. Home exercise/ stretching programs were developed for both				the duration of the study.
Home exercise/ stretching programs were developed for both				
stretching programs were developed for both	e			
were developed for both				
1	••••			
groups and the	1			
	groups and the			
participants were asked				
to complete their				
activities at least 5-6				
days per week.	days per week.			
Recommendation: Findings from this exploratory randomized clinical trial suggest sub-symptom				1.11

Recommendation: Findings from this exploratory randomized clinical trial suggest sub-symptom exacerbation aerobic training is potentially beneficial for adolescents with persistent symptoms after mTBI.

Source: Leddy JJ, Haider MN, Ellis MJ, et al. (2019). Early subthreshold aerobic exercise for sport-related concussion: A randomized clinical trial. *JAMA Pediatr*:173(4):319–325. doi:10.1001/jamapediatrics.2018.4397

Design Methodology/	Sample/	Design Instruments	Results
Purpose	Setting	Both forms of exercise	In this randomized
multicenter prospective	A total of 103	were performed	clinical trial of 103
randomized clinical	participants	approximately 20 minutes	adolescents, those
trial	were included	per day, and participants	assigned to aerobic
Purpose:	(aerobic	reported daily symptoms	exercise recovered
What is the	exercise: $n = 52$;	and compliance with	faster (13 days)
effectiveness of	24 female	exercise prescription via a	than those assigned
subsymptom threshold	[46%];	website	to placebo-like
aerobic exercise vs a	stretching,	Measured days from injury	stretching (17
placebo-like stretching	n = 51; 24	to recovery; recovery was	days), a significant
program prescribed to	female [47%])	defined as being	difference.
adolescents in the short		asymptomatic, having	
term after sport-related		recovery confirmed	
concussion?	Level: II	through an assessment by a	
Method:		physician blinded to	
Male and female	Quality:	treatment group, and	
adolescent athletes (age	Excellent	returning to normal	
13-18 years) presenting		exercise tolerance on	
within 10 days of SRC		treadmill testing.	
were randomly		Participants were also	
assigned to aerobic		classified as having normal	
exercise or a		(<30 days) or delayed (\geq 30	
placebo-like stretching		days) recovery.	
regimen. Symptoms			
and time to			
return-to-play were the			
outcomes assessed.			
Recommendation: Earl	y subthreshold aero	obic exercise appears to be an	effective treatment

for adolescents after sport-related concussion.

Source: Leddy, J. J., Hinds, A. L., Miecznikowski, J., Darling, S., Matuszak, J., Baker, J. G., ... Willer, B. (2018). Safety and prognostic utility of provocative exercise testing in acutely concussed adolescents: A randomized trial. *Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine*, 28(1), 13–20. doi:10.1097/JSM 0000000000431

doi:10.1097/JSM.0000000		1	
Design Methodology/	Sample/ Setting	Design Instruments	Results
Purpose	Adolescents	Buffalo Concussion	Days to recovery
Prospective Randomized	with SRC (1–9	Treadmill Test	(p=0.7060) and typical
Control Trial	days from		vs. prolonged recovery
Purpose:	injury).	Heart rate threshold	(p=0.1195) were not
To evaluate (1)	Sixty-five were	(HRt) at symptom	significantly different
systematic assessment of	randomized and	exacerbation	between groups.
exercise tolerance in	54 completed	represented level of	Symptom severity
adolescents shortly after	the study (mean	exercise tolerance.	scores decreased in
sport-related concussion	age 15 y, 4 days		both groups over 14
(SRC) and (2) the	post injury).	Participants reported	days (p<0.0001), were
prognostic utility of such		symptoms daily and	similar (p=0.2984), and
assessment.		then had follow up	did not significantly
Method:	Level: II	BCTT.	increase the day after
We conducted a			the BCTT (p=0.1960).
randomized controlled	Quality:	Days to recovery and	Lower HRt on visit day
trial of provocative	Excellent	typical (≤ 21 days)	1 was strongly
exercise testing (BCTT)		vs. prolonged	associated with
on the day of clinic		recovery (> 21 days).	prolonged recovery
presentation (Visit #1) in		Mixed effects linear	time (p=0.0032).
adolescents who		models and linear	Systematic evaluation
sustained SRC within		regression techniques	of exercise tolerance
1–10 days of injury. We		examined symptom	using the BCTT within
conducted a second		reports and time to	one week after SRC did
follow up visit		recovery. Linear	not affect recovery. The
approximately 14 days		Regression assessed	degree of early exercise
after the first visit or		the association of	intolerance after SRC
approximately 21 days		HRt with recovery	was important for
post injury (Visit #2).		time.	prognosis. This has
			implications for school
			academic and team
			preparation.

Recommendation: Clinicians can safely assess exercise tolerance using the predetermined stopping criterion of symptom exacerbation on the BCTT in adolescents within the first week after SRC. The degree of early exercise intolerance appears to have prognostic utility and may serve as a physiological biomarker for the severity of concussion. Moreover, return of normal exercise tolerance could serve as a physiological biomarker of concussion recovery. Our data show that the BCTT is safe and suggest that a low HRt early after concussion identifies those adolescents who are slow to recover.

Source: Maerlender, A., Rieman, W., Lichtenstein, J., & Condiracci, C. (2015). Programmed physical exertion in recovery from sports-related concussion: A randomized pilot study. *Developmental Neuropsychology*, *40*(5), 273–278. doi: 10.1080/87565641.2015.1067706

Developmental Neurop	sychology, 40(5), $2/3-2/8$. doi: 10.1080/8/5	65641.2015.1067706
Design	Sample/	Design Instruments	Results
Methodology/	Setting	Five measures were used to	There was no difference
Purpose	Twenty-eight	assess athletes throughout	between the distributions
Randomized pilot	recently	the study. These included	or medians for the
trial	concussed	the use of health and	number of days to injury
Purpose:	college	demographics	to the start of study
to determine the	athletes were	questionnaires, the	participation. There were
effect of moderate	recruited	ImPACT (Immediate	also no differences
levels of prescribed		Post-concussion	between groups on any of
physical exertion on	Level: II	Assessment and Cognitive	the other independent
recovery from		Test) neurocognitive test	variables: severity of
concussion	Quality:	battery, the Borg CR10	injury (ImPACT
Method:	Good	RPE scale (Rated Perceived	composite and ImPACT
Initial clinical		Exertion), the Post-ride	symptom total change
evaluation was		symptom change rating: an	scores: p-values all >.10:
completed as soon as		experimental Likert scale to	Table 1), or number of
possible. When test		rate the changes in	previous concussions
scores, balance, and		symptoms after the bike	(independent samples
symptoms had		exertion, and Actical	median test, $p = .114$).
returned to baseline,		actigraphs to measure the	Overall, significantly
the athlete was		amount of physical activity,	more bike-rides resulted
determined to be		day and night.	in some level of symptom
recovered. Athletes			change (41%) versus no
assigned to the			change (59%)): X2 (1) =
exertion protocol			4.76, p = .03. There was a
rode a stationary			1.8 symptom increase per
bicycle at a			ride rated in "light" rides
perceived exertion			(i.e., number of light
level of "mild" to			symptom increases
"moderate." In the			divided by the total
standard condition,			number of light exertion
athletes were			rides), a .55 symptom
instructed to engage			increase in "moderate"
in no systemic			rides, and seven
exertion beyond			symptoms increased per
the normal activities			"strenuous" ride.
required for school.	<u> </u>		
Recommendation: T	his study provid	des initial evidence that startin	g exercise relatively early

after injury, and that mild symptom increases should not interfere in recovery. However, vigorous activity was deleterious.

Source: Micay, R., Richards, D., & Hutchison, M. G. (2018). Feasibility of a postacute structured aerobic exercise intervention following sport concussion in symptomatic adolescents: A randomised controlled study. *BMJ Open Sport & Exercise Medicine*, *4*(1), e000404. doi: 10.1136/bmjsem-2018-000404

C000404. doi: 10.1130/billiscii-2010-000404					
Design Methodology/	Sample/ Setting	Design Instruments	Results		
Purpose	Symptomatic	Outcome measures	The AE group		
Randomized Control Trial	adolescents with	included: (1)	experienced		
Purpose:	SRC were	Intervention feasibility:	greater		
This study examined the	randomized to one	symptom status pre-post	symptom		
feasibility of implementing	of two groups:	exercise sessions and	resolution		
a standardized aerobic	Aerobic Exercise	completion of	compared with		
exercise (AE) intervention	(n=8) or Usual	intervention and (2)	the Usual Care		
in the post-acute stage of	Care (n=7). Total	Clinical recovery:	Group across		
SRC recovery in a sample	number of final	symptom status at	the recovery		
of adolescent students with	participants was	weeks 1, 2, 3 and 4	timeline.		
SRC compared with usual	15.	post-injury and medical			
care.	Aged 14-18.	clearance date. The			
Method:		PCSS was used to			
Symptomatic adolescents		determine symptom			
with SRC were randomized	Level: II	severity.			
to one of two groups:					
Aerobic Exercise (n=8) or	Quality: Good				
Usual Care (n=7). The AE					
intervention, beginning on					
day 6 post-injury,					
comprised eight sessions					
with progressive increases					
in intensity and duration on					
a cycle ergometer. Usual					
care consisted of rest					
followed by					
physician-advised					
progressions in activity					
levels in an unsupervised					
setting.					
Recommendation: Post-act	ate structured aerobic	exercise, beginning on day	6 post-injury,		

appears to be both safe and feasible to administer to symptomatic adolescent patients with SRC. Structured AE appears to be associated with faster resolution of symptoms severity compared with usual care.

Source: Mychasiuk, R., Hehar, H., Ma, I., Candy, S., & Esser, M. (2016). Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression. *European Journal of Neuroscience*, *44*(7), 2407-2417. doi: 10.1111/ein.13360

2407-2417. doi: 10.1111/ejn.13360						
Design	Sample/ Setting	Design Instruments	Results			
Methodology/	Rats were	Using a translational	The results suggest that			
Purpose	randomly assigned	rodent model of	exercise initiated within			
Randomized	to one of the	concussion, the	1–3 days			
Control Trial	conditions,	influence of exercise on	post-concussion			
Purpose:	(a)mTBI +	injury-associated	significantly improved			
this study examined	Immediate return,	behaviors that comprise	motor and cognitive			
the effects of	(8 M : 8 F);	post-concussive	functioning but had			
voluntary exercise	(b)mTBI + 3-day	syndrome (PCS) and	limited efficacy treating			
on concussion	delay, rats (9 M : 8	gene expression	emotional impairments.			
recovery	F); or (c)mTBI $+$	changes	When deprived of social			
Method:	7-day delay, (8 M :	(bdnf,dnmt1,Igf-1,pgc1	interaction and exercise,			
Animals in this	8 F); (d)sham +	-a,Tert) in prefrontal	a combination similar to			
study were in-house	Exercise. (20 M:	cortex and	clinical			
bred juvenile male	18 F). Two	hippocampus were	recommendations for			
and female Sprague	no-exercise groups	examined., Telomere	rest until symptom			
Dawley rats. Rats	that remained in	length (TL) was also	resolution, animals did			
were randomly	cages of four for	examined in the	not recover and			
assigned to receive	the duration of the	laboratory. Rats were	exhibited impairments			
a mTBI with the	experiment,	killed, and brain tissue	similar to typical mTBI			
Lateral Impact (LI)	(e)sham + No	was processed for	animals.			
device or a sham	Exercise (8 M: 9	molecular analysis.				
injury. Exercise,	F); and (f)mTBI +	Time-to-right and beam				
behavior, and	No] Exercise (11	walking were measured				
socialization	M : 9F).	for behavioral analysis.				
components were						
assessed.	assessed.					
	Level: II					
	Quality: Good					
	-	trategies may need to be en				
			guidelines, suggesting that			
exercise is valuable for the treatment of concussion.						

Source: Sufrinko, A. M., Kontos, A. P., Apps, J. N., McCrea, M., Hickey, R. W., Collins, M. W., & Thomas, D. G. (2017). The effectiveness of prescribed rest depends on initial presentation after concussion. *Journal of Pediatrics*, *185*, 167–172. doi: 10.1016/j.jpeds.2017.02.072

10.1016/j.jpeds.2017.02.07	2		
Design Methodology/	Sample/	Design Instruments	Results
Purpose	Setting	PCSS, ImPACT, and	A 2×2 factorial
Randomized Control Trial	Children were	the BESS, and Acute	ANOVA revealed a
Purpose:	eligible if they	Concussion Evaluation	significant patient
To evaluate if patients	were 11-22	tool were used in this	group × treatment arm
with signs of injury	years of age	study.	interaction for
respond differently to	and presented		symptom score at 3
prescribed rest after	to the ED	A series of 2×2	days after injury (F =
concussion com- pared	within 24 hours	ANOVAs with	6.31, P= .01, h2
with patients with	(median, 3) of	grouping factors of	= 0.07). Prescribed
symptoms only.	a concussion	patient group	rest increased the
Method:		(symptoms, signs) and	likelihood of still
Patients completed	Level: II	treatment arm	being symptomatic at
computerized		(prescribed rest,	days 1-6 and 8 (P<
neurocognitive testing and	Quality: Good	standard of care) were	.05) for the symptoms
standardized balance		used to examine	group. Rest was
assessment at the		differences on clinical	beneficial for patients
emergency department		measures. Univariate	in the signs group on
within 24 hours of injury		nonparametric test (ie,	verbal memory
and on follow-up (3 and		c2 with ORs and 95%	performance (t
10 days). Patients were		CIs) was used to	=-2.28, P= .029), but
randomized to rest or		examine the	not for the symptoms
usual care and completed		association between	group.
activity and symptom		treatment arm and	
diaries for 10 days after		symptom	
injury.		status 1-9 days after	
		injury.	

Recommendation: Compared with patients with signs of injury, patients with predominantly symptoms were more likely to remain symptomatic after injury if prescribed rest, whereas patients with signs of injury benefited from rest after a concussion. Individualized treatment planning after concussion should start in the emergency department.

Source: Teel, E. F., Register-Mihalik, J. K., Appelbaum L. G., Battaglini, C. L., Carneiro, K. A., Guskiewicz, K. M., . . . Mihalik, J. P., (2018). Randomized controlled trial evaluating aerobic training and common sport-related concussion outcomes in healthy participants. *Journal of Athletic Training*, *53*(12), 1156-1165. doi: 10.4085/1062-6050-7-18

Design Methodology/	Sample/ Setting	Design Instruments	Results
Purpose	Convenience	The CNS Vital Signs	An interaction effect
Randomized Control	sample of	standardized scores,	was found for total
Trial	university	Vestibular/Ocular	symptom score (P ¹ / ₄
Purpose:	students and staff	Motor Screening	.01); the intervention
To investigate the	between the ages	near-point convergence	group had improved
effects of a brief aerobic	of 18 and 30 who	distance (cm), and	symptom scores
exercise intervention on	participated in at	Graded Symptom	between sessions
clinical concussion	least 30 min. of	Checklist, Balance	(session 1: 5.1 ± 5.8 ;
outcomes in healthy,	physical activity	Error Scoring System,	session 2: 1.9 ± 3.6).
active participants.	3x a week. Total	and Standardized	Cognitive flexibility,
Method:	of 40 healthy,	Assessment of	executive
Intervention(s):	uninjured	Concussion total	functioning,
Participants were	participants	scores.	reasoning, and total
randomized into the			symptom score
acute concussion	Level: II		outcomes were better
therapy intervention			but composite
(ACTIVE) training or	Quality: Good		memory, verbal
non-training group. All			memory, and
participants completed			near-point
symptom, cognitive,			convergence distance
balance, and vision			scores were worse at
assessments during 2			the second session
test sessions			(all P values $< .05$).
approximately 14 days			However, few
apart. Participants			changes exceeded the
randomized to ACTIVE			80% reliable change
training completed six			indices calculated for
30-minute exercise			this study, and effect
sessions that progressed			sizes were generally
from 60% to 80% of			small to negligible.
individualized maximal			
oxygen consumption			
('Vo2max) across test			
sessions, while the			
non-training			
Recommendation: A br	ief aerobic training p	protocol had few meaningf	ul effects on clinical

Recommendation: A brief aerobic training protocol had few meaningful effects on clinical concussion assessment in healthy participants, suggesting that current concussion-diagnostic and assessment tools remain clinically stable in response to aerobic exercise training.

Source: Thomas, D. G., Apps, J. N., Hoffmann, R. G., Mccrea, M., & Hammeke, T. (2015). Benefits of strict rest after acute concussion: A randomized controlled trial. *Pediatrics*, *135*(2), 213–223. doi: 10.1542/peds.2014-0966

Design Methodology/	Sample/	Design	Results		
Purpose	Setting	Instruments	Post discharge, both		
Randomized Control Trial	Ninety-nine	PCSS, ImPACT,	groups reported a 20%		
Purpose:	patients were	BESS	decrease in energy		
To determine if	enrolled; 88		exertion and physical		
recommending strict rest	completed all	Participants	activity levels. As		
improved concussion	study	received	expected, the		
recovery and outcome after	procedures (45	computerized	intervention group		
discharge from the pediatric	intervention,	neurocognitive	reported less school and		
emergency department	43 control)	testing and a	after-school attendance		
(ED).		standardized	for days 2 to 5		
Method:	Patients aged	balance assessment.	post-concussion. There		
Patients were randomized	11 to 22 years	Trained research	was no clinically		
to strict rest for 5 days	presenting to a	assistant arranged	significant difference in		
versus usual care (1–2 days	pediatric ED	follow-up	neurocognitive or		
rest, followed by stepwise	within 24	appointments with	balance outcomes.		
return to activity). Patients	hours of	the participants for	However, the		
completed a diary used to	concussion	3 and 10 days after	intervention group		
record physical and mental	were recruited.	their ED visit, at	reported more daily		
activity level, calculate		which time repeat	post-concussive		
energy exertion, and record	Level: II	neurocognitive tests	symptoms and slower		
daily post-concussive		and balance	symptom resolution.		
symptoms. Sample size	Quality: Good	assessments were			
calculations were powered		administered.			
to detect clinically					
meaningful differences in		3 day and 7 day			
post-concussive symptom,		journals were kept			
neurocognitive, and balance		by the participants			
scores between treatment		to measure			
groups. Linear mixed		symptoms. The			
modeling was used to		journals were			
detect contributions of		reviewed at the last			
group assignment to		appointment			
individual recovery					
trajectory.					
Recommendation: Recomm					
offered no added benefit over	offered no added benefit over the usual care. Adolescents' symptom reporting was influenced				

Controlled Trials without Randomization

cognitive and physical rest for treatment of sports-related concussion. <i>Journal of Pediatrics</i> ,					
	<i>161</i> (5), 922–926. doi: 10.1016/j.jpeds.2012.04.012				
Design Methodology/	Sample/ Setting	Design	Results		
Purpose	49 high school to	Instruments	Participants showed		
No randomization	college-aged	ImPACT test	significantly		
Purpose	individuals (range =	online	improved		
To evaluate the efficacy of	14-23 years) who	version, was	performance on		
cognitive and physical rest	sustained a concussion	used for the	Immediate		
for the treatment of	and were referred to	study.	Post-Concussion		
concussion.	the Sports Concussion		Assessment and		
Method	Center of New Jersey		Cognitive Testing and		
(1) completion of intake	for assessment and		decreased symptom		
forms and required	management.		reporting following		
paperwork; (2)	Diagnosis of having a		prescribed cognitive		
interview/clinical history	concussion was		and physical rest ($P <$		
exam of patient; (3)	consistent with the		.001), regardless of		
completion of ImPACT	consensus definition.		the time between		
post-concussion testing; (4)			concussion and onset		
explanation to	Level: III		of rest ($P = .44$).		
patient/parents of ImPACT					
results and prescription of	Quality: Good				
cognitive and physical rest					
with accompanying verbal					
instruction, take home					
report, and instructional					
handouts; and (5) follow-up					
examination that included					
ImPACT post- concussion					
testing, clinical interview					
for update in status, and					
prescription for next steps in					
recovery process. Patients					
were followed until cleared					
to return to normal,					
pre-concussion activities.					

Source: Moser, R. S., Glatts, C., & Schatz, P. (2012). Efficacy of immediate and delayed cognitive and physical rest for treatment of sports-related concussion. *Journal of Pediatrics*,

Recommendation: These preliminary data suggest that a period of cognitive and physical rest may be a useful means of treating concussion-related symptoms, whether applied soon after a concussion or weeks to months later.

Source: Moser, R. S., Schatz, P., Glenn, M., Kollias, K. E., & Iverson, G. L. (2015). Examining prescribed rest as treatment for adolescents who are slow to recover from concussion. *Brain Injury*, *29*(1), 58–63. doi: 10.3109/02699052.2014.964771

Design Methodology/	Sample/ Setting	Design	Results	
Purpose	Participants were 13	Instruments	Repeated measures	
Single group, no	adolescent athletes	ImPACT	ANOVAs revealed a	
randomization study	with persistent	composite	significant effect of	
Purpose:	symptoms following a	scores and	prescribed rest on all	
Rest is a widely	concussion. All were	symptom	ImPACT composite	
recommended treatment for	between the ages of	scores	scores and the total	
concussion, but its utility is	12-23. More than		symptom score.	
unclear following the acute	three-quarters (77%)		Post-hoc analyses	
stage of recovery. This	had self-reported		revealed no	
study examined the effects	ADHD, learning		significant differences	
of 1-week of prescribed rest	disability or two prior		between Time 1 and	
in concussed adolescent	concussions.		Time 2, whereas	
athletes.			significant differences	
Method:	Level: III		were present after	
All participants completed			prescribed rest.	
the online version of	Quality: Good		Following prescribed	
ImPACT prior to coming to			rest, having two or	
the clinic and again at the			more reliably	
clinic. At the time of the			improved cognitive	
initial evaluation at the			test scores or having	
clinic, a list of cognitive and			improved symptoms	
physical activities to be			was present in eight of	
avoided was provided to the			the 13 patients	
parents of athletes to help			(61.5%).	
monitor rest compliance.				
The activities to avoid were				
explained to both athletes				
and parents. Low exertion				
activities were				
recommended such as:				
listening to relaxing				
audiobooks, listening to				
relaxing music, etc. Athletes				
were advised to avoid				
activities that might produce				
a sweat or exacerbate				
symptoms.		, •. . •		
Recommendation: A substat		-		
following concussion showed		ins and cognitive	iunctioning following	
education, reassurance and 1-week of prescribed rest.				

Source: Willer, B. S., Haider, M. N., Bezherano, I., Wilber, C. G., Mannix, R., Kozlowski, K., & Leddy, J. J. (2019). Comparison of rest to aerobic exercise and placebo-like treatment of acute sport-related concussion in male and female adolescents. *Archives of Physical Medicine and Rehabilitation*, *100*(12), 2267–2275. doi: 10.1016/j.apmr.2019.07.003

and Rehabilitation, 100(12), 2267–2275. doi: 10.1016/j.apmr.2019.07.003					
Design Methodology/	Sample/ Setting	Design	Results		
Purpose	University concussion	Instruments	The RG recovered in		
Quasi-experimental	management clinics.	The primary	16 days, which was		
trial	Participants:	outcome was	significantly delayed		
Purpose:		median days	compared with EG.		
To compare a sample of	Adolescent athletes	from injury to	The PG recovered in		
adolescents with	(aged 13-18 years)	recovery. The	17 days. Four percent		
sport-related	presenting within 10	secondary	of the EG, 14% of the		
concussion who were	days of SRC (mean, 5	outcome was	PG, and 13% of the		
prescribed rest with 2	days after injury)	proportion	RG had delayed		
arms of a randomized	received a	classified as	recovery. There was		
controlled trial	recommendation for	normal recovery	no difference in		
comparing aerobic	rest. Their outcomes	(<30d) or	recovery time or		
exercise with	were compared with	delayed recovery	delayed recovery		
placebo-like stretching.	matched samples of	(30d).	between male		
We also compared sex	adolescents assigned to		participants and		
differences across the 3	aerobic exercise or	BCTT and PCSS	female participants		
approaches to	placebo-like stretching	was used as well.	across groups.		
treatment.	group.		Female participants		
Method:			prescribed rest		
Physicians diagnosed	Level: III		experienced an		
concussion. A patient			increase in symptoms		
received 1 point for	Quality: Good		vs the other groups.		
each sign of injury or					
indication that					
performance of test					
item caused symptoms.					
All groups were					
prescribed treatment at					
the initial clinic visit					
and followed up with					
the physician weekly					
for the first 4 weeks or					
until recovered,					
whichever came first.					
	tive rest and a placebo-like				
days to recovery and sym	days to recovery and symptom improvement pattern after SRC. Both conditions were less				

Recommendation: Relative rest and a placebo-like stretching program were very similar in days to recovery and symptom improvement pattern after SRC. Both conditions were less effective than subsymptom threshold aerobic exercise. Female adolescents appear to be susceptible to symptom increase when prescribed rest.

Case-control or cohort studies

Source: Cordingley, D., Girardin, R., Reimer, K., Ritchie, L., Leiter, J., Russell, K., & Ellis, M. J. (2016). Graded aerobic treadmill testing in pediatric sports-related concussion: Safety, clinical use, and patient outcomes. Journal of Neurosurgery: Pediatrics, 18(6), 693-702. doi: 10.3171/2016.5.PEDS16139

Design Methodology/	Sample/	Design Instruments	Results	
Purpose	Setting	Clinical assessments	Treadmill testing	
Retrospective Chart	One	were carried out by a	confirmed physiological	
Review	hundred	single neurosurgeon and	recovery in 63 (96.9%)	
Purpose:	six patients	included clinical history	of 65 patients tested,	
1) to evaluate the safety,	(mean age	taking, physical	allowing successful	
tolerability, and clinical use	15.1 years,	examination, and	return to play in 61	
of graded aerobic treadmill	range	recording specific	(93.8%). Treadmill	
testing in pediatric patients	11–19	patient-reported	testing was used to	
with sports-related	years) with	concussion-related	diagnose physiological	
concussion (SRC), and 2)	SRC.	symptoms using the	PCD in 58 patients and	
to evaluate the clinical		Post-Concussion	cervicogenic PCD in 1	
outcomes of treatment with	Level: IV	Symptom Scale (PCSS).	patient. Of the 41	
a submaximal aerobic		Graded aerobic	patients with	
exercise program in	Quality:	treadmill testing using a	physiological PCD who	
patients with physiological	Good	modified Balke protocol	had complete follow-up	
post-concussion disorder		for incremental	and were treated with	
(PCD).		increases in intensity	tailored submaximal	
Method:		was used as a diagnostic	exercise prescription, 37	
Patients were referred to a		tool to assess	(90.2%) were classified	
multidisciplinary pediatric		physiological recovery,	as clinically improved	
concussion program and		classify post-concussion	and 33 (80.5%)	
underwent graded aerobic		syndrome (PCS)	successfully returned to	
treadmill testing. Patients		subtype, and reassess	sporting activities.	
with a symptom-limited		patients following		
threshold on treadmill		treatment. The Borg		
testing (physiological PCD)		rating of perceived		
were treated with an		exertion was also used.		
individually tailored				
submaximal exercise				
prescription and				
multidisciplinary targeted				
therapies.				
Recommendation: Graded		-	· •	
valuable tool that can assist in the evaluation and management of pediatric SRC.				

Source: Dobney, D. M., Grilli, L., Kocilowicz, H., Beaulieu, C., Straub, M., Friedman, D., & Gagnon, I. J. (2018). Is there an optimal time to initiate an active rehabilitation protocol for concussion management in children? A case series. *Journal of Head Trauma Rehabilitation*, *33*(3), E11–E17. doi: 10.1097/HTR.00000000000339

Design Methodology/	Sample/ Setting	Design	Results
Purpose	Case series of	Instruments	All patients experienced
Case series	participants	Symptom	significant improvement
Purpose:	starting active	severity	of symptoms while
To estimate the time frame	rehabilitation	measured by	participating in active
during which initiating an	less than 2, 2, 3,	the 22-item	rehabilitation,
active rehabilitation	4, 5, or 6 or	Post-Concussi	irrespective of the start
intervention (aerobic exercise,	more weeks	on Scale	time post-onset. Patients
balance, and sport specific	post-concussion.	(PCS)-revised.	initiating active
skills) after concussion	A total of 677		rehabilitation at 2 (P<
contributed to improvement in	children and		.001) or 3 (P= .039)
symptoms at follow-up in	adolescents with		weeks post-injury
children and adolescents who	concussion aged		demonstrated lower
are slow to recover (symptoms	7 to 18 years.		symptom severity at
persisting beyond 2 weeks)	Setting was a		follow-up than those
from concussion.	concussion		starting at 6 weeks or
Method:	clinic at a		later. Patients starting at
Data were obtained from a	tertiary care		2 weeks had lower
database collected	pediatric		symptom severity than
prospectively from the TBI	teaching		patients starting less
Program/Concussion Clinic of	hospital.		than 2 (P= .02), 4 (P=
the MCH. After initial			.20), or 5 weeks
concussion management,	Level: IV		postinjury ($P = .04$).
participants were instructed to			Lastly, patients starting
inform the clinic coordinator if	Quality: Good		less than 2 and 6 weeks
symptoms were present 2			or more postinjury
weeks following injury for			yielded equivalent
referral to the active			outcomes.
rehabilitation intervention,			
which was then scheduled to			
start between 3 and 4 weeks			
pos-tinjury.			
pos-tinjury. P ocommondation: The finding	s support the use of	factiva rababilitat	ion in children and

Recommendation: The findings support the use of active rehabilitation in children and adolescents who are slow to recover from concussion. Participants starting active rehabilitation less than 2 weeks and up to 6 or more weeks post-concussion demonstrated significant symptom improvements, but improvement was observed in all groups, regardless of the time to start active rehabilitation.

Source: Gibson, S., Nigrovic, L. E., O'Brien, M., & Meehan, W. P. (2013). The effect of recommending cognitive rest on recovery from sport-related concussion. *Brain Injury*, 27(7–8), 839–842. doi: 10.3109/02699052.2013.775494

Design Methodology/	Sample/ Setting	Design	Results	
Purpose	184 patients who	Instruments	Of the 135 study patients	
Retrospective Cohort	presented to a sports	PCSS	with complete medical	
Study	concussion clinic in an		records, 85 (63%) had	
Purpose:	academic medical	Balance error	cognitive rest	
To determine whether	center between 1	symptom score	recommended. Of those,	
recommending	November 2007 and 31		79 (59%) had prolonged	
cognitive rest to	July 2009. Participants	Neurocognitive	symptoms. In the	
athletes after a	ranged in age from	test	multivariate analysis,	
sport-related	8–26 years.		only initial PCSS score	
concussion affects time	Seventy-two percent of	SCAT2	was associated with the	
to symptom resolution.	the patients were male.		duration of concussion	
Method:			symptoms (adjusted	
The effect of	Level: IV		odds ratio (AOR) ¹ / ₄ 1.03;	
recommending			95% CI ¹ / ₄ 1.01–1.05).	
cognitive rest on	Quality: Good		The recommendation for	
symptom duration			cognitive rest was not	
(days) was measured			significantly associated	
after adjusting for age,			with time to concussion	
gender, initial PCSS			symptom resolution	
score, history of			(AOR ¹ / ₄ 0.5; 95%	
amnesia, history of			CI ¹ / ₄ 0.18–1.37).	
loss of consciousness				
and number of				
previous concussions.				
Using multivariate				
logistic regression,				
independent predictors				
of prolonged				
symptoms were				
identified, defined as				
430 days.				
Recommendation: Giv	en the limited evidence re	garding the effects	s of cognitive rest on	
recovery from concussion, recommendations of prolonged periods of cognitive rest,				

particularly absences from school, should be approached cautiously.

Source:Grool, A., Aglipay, M., Momoli, F., Meehan, W., Freedman, S., Yeates, K., . . . Zemek, R. (2016). Association between early participation in physical activity following acute concussion and persistent postconcussive symptoms in children and adolescents. *JAMA*, *316*(23), 2504-2514. doi: 10.1001/jama.2016.17396

Design Methodology/		×	Degulte
Design Methodology/	Sample/ Setting	Design Instruments	Results
Purpose	3063 participants	Physical activity	The proportion
Prospective, multicenter	aged $5 - 18$ years	participation and	with
cohort study	with ED	post-concussive	post-concussion
Purpose:	presentation for	symptom severity were	symptoms at 28
To investigate the	acute head injury	rated using standardized	days was 28.7%
association between	occurring within	questionnaires in the ED	with participation
participation in physical	the preceding 48	and at days 7 and 28	in early physical
activity within 7 days	hours, who met	postinjury. PPCS $(3 > or$	activity versus
post-injury and incidence	concussion	equal to new or	40.1% with
of persistent	diagnosis criteria	worsening symptoms on	conservative rest,
post-concussive	according to the	the post-concussion	a significant
symptoms (PPCS).	2012 Zurich	symptom inventory was	difference.
Method:	consensus	assessed at 28 days post	
This research comprises a	statement. 2413	enrollment. Early	
planned secondary	patients completed	physical activity and	
analysis of the Predicting	the study.	PPCS relationships were	
Persistent Postconcussive		examined by unadjusted	
Problems in Pediatrics		analysis, 1:1 propensity	
(5P) study. Participants	Level: IV	score matching, and	
were recruited from		inverse probability of	
August 2013 until June	Quality: Good	treatment weighting	
2015 at 9 pediatric		(IPTW). Sensitivity	
emergency departments		analyses examined	
(EDs). Trained research		patients (≥3 symptoms)	
assistants completed		at day 7.	
standardized assessments			
of all patients in the ED.			
Enrolled patients were			
offered web-based survey			
or telephone follow-up at			
7 and 28 days post			
enrollment. Symptom			
scores were assessed.			
Recommendation: Partici	ipation in physical act	tivity within 1 week after in	jurv may benefit

Recommendation: Participation in physical activity within 1 week after injury may benefit symptom recovery following acute concussion in children and adolescents.

Source: Howell, D. R., Brilliant, A. N., Oldham, J. R., Berkstresser, B., Wang, F., & Meehan, W. P. (2020). Exercise in the first week following concussion among collegiate athletes: Preliminary findings. *Journal of Science and Medicine in Sport*, *23*(2), 112–117. doi: 10.1016/j.jsams.2019.08.294

Design Methodology/	Sample/	Design	Results
Purpose	Setting	Instruments	Thirteen athletes were not
Longitudinal cohort	Collegiate DI	PCSS	included in the current
Purpose:	athletes (n =		study, resulting in an 85%
Our purpose was to examine	72; age = 20.2	Single/Dual	response rate. Thirteen of
the association between	\pm 1.3 years;	Task Gait	the athletes who completed
exercise after concussion with	46% female)	Assessment	the study exercised between
symptom severity, postural	with		evaluations (18%). There
control, and time to	concussion	Modified	was no symptom resolution
symptom-resolution.	completed	BESS	time difference between
Method: Patients completed a			groups (median = 13 [IQR
symptom questionnaire at	Level: IV		= 7-18] days vs. 13 [7-23]
initial $(0.6 \pm 0.8 \text{ days})$			days; $p = 0.83$). Symptom
post-injury) and follow-up	Quality: Good		ratings were similar
$(2.9 \pm 1.4 \text{ days post-injury})$			between groups at the acute
evaluations, and a postural			post-injury assessment
control assessment at			(median PCSS = 18.5
follow-up. Participants were			[7.5–26] vs. 17 [14–40]; p
grouped into those who			= 0.21), but a main effect of
exercised in between the time			group after adjusting for
of injury and the follow-up			time from injury to
evaluation and those who did			assessment indicated the
not. Decisions regarding			exercise group reported
post-concussion exercise were			lower symptom severity
made by a sports medicine			than the no exercise group
team consisting of a single			across both assessments (p
team physician and athletic			= 0.044). The dual-task gait
trainers.			speed of the exercise group
			was higher than the no
			exercise group (0.90 ± 0.15)
			vs. 0.78 ± 0.16 m/s; p =
Recommendation: Athletes w			0.02).

Recommendation: Athletes who were recommended aerobic exercise after concussion did not have worse outcomes than those who were not. Exercise within the first week after concussion does not appear to be associated with detrimental clinical outcomes. **Source:** Howell, D. R., Mannix, R. C., Quinn, B., Taylor, J. A., Tan, C. O., & Meehan, W. P. (2016). Physical activity level and symptom duration are not associated after concussion. *American Journal of Sports Medicine*, *44*(4), 1040–1046. doi: 10.1177/0363546515625045

American Journal of Spo				
Design Methodology/	Sample/ Setting	Design Instruments	Results	
Purpose	This study	Symptoms were	On initial examination,	
Cohort study	included 364	assessed using the	the mean PCSS score	
Purpose:	patients who were	PCSS, a 22-symptom	was 34.7. The mean	
To examine the	diagnosed with a	inventory adapted	symptom duration was	
association between	concussion, were	from the Standardized	48.9 days after the	
physical activity and	seen by a	Concussion	injury. Among the	
symptom duration in a	physician within	Assessment Tool	variables included in	
cohort of patients after	3 weeks of injury	version 2.	the model, initial PCSS	
a concussion.	and completed a	Activity was assessed	score and female sex	
Method:The	questionnaire at	during the initial	were independently	
questionnaire assessed	the initial clinic	clinic visit and during	associated with	
the post-concussion	visit.	each regularly	symptom duration,	
symptom scale (PCSS)		scheduled follow-up	while physical activity	
score, previous number	Study participants	examination. During	level after the injury	
of concussions,	ranged in age	follow-up visits,	was not. For	
presence of the loss of	from 8 to 27 years	patients described	participants aged	
consciousness or	(mean age, 15.0	their average level of	between 13 and 18	
amnesia at the time of	years) and had	physical activity	years, however, higher	
injury, and prior	sustained a mean	(Table 1) and	levels of physical	
treatment for	of 0.8 prior	cognitive activity	activity after the injury	
headaches. During each	concussions; 222	since the previous	were associated with a	
follow-up clinic visit,	patients (61%)	clinic visit using	shorter symptom	
physical activity level	were male.	standardized scales.	duration.	
was self-reported. A		This physical activity		
Cox proportional		scale was adapted		
hazard model was	Level: IV	from the graduated		
constructed to		return-to-play		
determine the	Quality: Good	protocol described by		
association between		the Consensus		
symptom duration,		Statement on		
initial clinic visit		Concussion in Sport.		
responses, and				
self-reported physical				
activity level after the				
injury.				
Decommondettere D	140 from 41-241	 	viter after the initiation	
Recommendation: Res	Recommendation: Results from this study indicate that physical activity after the injury may			

Recommendation: Results from this study indicate that physical activity after the injury not be universally detrimental to the recovery of concussion symptoms.

Source:Lawrence, D.W., Richards, D., Comper, P., & Hutchison, M.G. (2018). Earlier time to aerobic exercise is associated with faster recovery following acute sport concussion. *PLoS ONE, 13*(4): e0196062. doi: 10.1371/journal.pone.0196062

<i>ONE</i> , <i>13</i> (4): e0196062. doi:			Desculta
Design Methodology/	Sample/	Design	Results
Purpose	Setting	Instruments	Initiating aerobic
retrospective study design	A total of 253	The primary	exercise at 3 and 7 days
with consecutive sampling	acute	exposure of	following injury was
Purpose:	concussions	interest was the	associated with a
To determine whether	[median (IQR)	time (days from	respective 36.5% (HR,
earlier time to initiation of	age, 17.0	injury) to the	0.63; 95% CI, 0.53–0.76)
aerobic exercise following	(15.0–20.0)	initiation of	and 73.2% (HR, 0.27;
acute concussion is	years; 148	aerobic exercise	95% CI, 0.16–0.45)
associated with time to full	(58.5%) males]	following	reduced probability of
return to (1) sport and (2)	were included in	concussion	faster full return to sport
school or work.	this study		compared to within 1
Method:		Age, sex,	day; and a respective
All acute physician	Level: IV	symptom severity,	45.9% (HR, 0.54; 95%
diagnosed concussions		time to first	CI, 0.44–0.66) and 83.1%
presenting to an academic	Quality: Good	assessment, LOC,	(HR, 0.17; 95% CI,
sports medicine clinic		PTA, history of	0.10–0.30) reduced
from October 2016 to		psychiatric	probability of faster full
December 2017. The		condition, and	return. Additionally,
academic sports medicine		history of a	concussion history,
clinic has ten active sports		headache disorder	symptom severity, LOC
medicine physicians, all of		were also acquired	deleteriously influenced
whom provide concussion			concussion recovery.
care in alignment with the			
most recent Consensus			
Statement on Concussion			
in Sport. Although data			
collection was			
retrospective with respect			
to the time of the study,			
coders were blinded to the			
main out- come variables			
when collecting data on			
exposure variables.			
Recommendation: Earlier		c exercise was associ	

Recommendation: Earlier initiation of aerobic exercise was associated with faster full return to sport and school or work. This study provides greater insight into the benefits and safety of aerobic exercise within the first week of the injury.

Source: Silverberg, N. D., & Otamendi, T. (2019). Advice to rest for more than 2 days after mild traumatic brain injury is associated with delayed return to productivity: A case-control study. *Frontiers in Neurology*, *10*(APR), 1–6. doi: 10.3389/fneur.2019.00362

Design Methodology/	Sample/ Setting	Design	Results
Purpose	(1) aged 18–60	Instruments	Of the eligible
Case-control design	years; (2)	Rivermead	participants, 82.9%
Purpose:	sustained a	Post-concussion	reported being advised to
(i) document the current	physician	Symptom	rest for more than 2 days
state of deimplementation	diagnosed mTBI	Questionnaire	(exposure group). This
of prolonged rest advice,	<3 months ago;		advice was not associated
(ii) identify patient	(3) fluent in	Personal Health	with patient
characteristics associated	English; and (4)	Questionnaire-9	characteristics. In
with receiving this advice,	had a family		generalized linear
and (iii) examine the	physician or	Generalized	modeling, exposure to
relationship between	could identify a	Anxiety	prolonged rest advice
exposure to this advice and	walk-in clinic	Disorder-7	predicted return to
clinical outcomes.	where they access		productivity status at
Method:	primary care (for		intake (B = -1.06 ,
Participants were	the parent study).		chi-squared(1) = 5.28, p =
prospectively recruited			0.02; 64.5% in the
from two concussion	Level: IV		exposure group vs. 40.0%
clinics in Canada's public			in the control were on
health care system. They	Quality: Good		leave from work/school a
completed self-report			the time of clinic intake,
measures at clinic intake as			19.8 vs. 24% had partially
well as a questionnaire			returned, and 11.6 vs.
with patient, injury, and			24% had fully returned to
recovery characteristics			work/school). The
and the question: "Were			exposure group had
you advised by at least one			marginally
health professional to rest			(non-significantly) higher
for more than 2 days after			post-concussion,
your injury?			depression, and anxiety
			symptoms.

generally unhelpful, as patients in the exposure group were less likely to have resumed work/school at 1–2 months post-injury.

Appendix B: Quality Assessments and Level of Evidence Chart

PEDro scale

1.	eligibility criteria were specified	no 🗆 yes 🗖 y	where:
2.	subjects were randomly allocated to groups (in a crossover study, subjects were randomly allocated an order in which treatments were received)	no 🗆 yes 🗖 y	where:
3.	allocation was concealed	no 🗆 yes 🗖 🗴	where:
4.	the groups were similar at baseline regarding the most important prognostic indicators	no 🗆 yes 🗖 y	where:
5.	there was blinding of all subjects	no 🗆 yes 🗖 🛛	where:
6.	there was blinding of all therapists who administered the therapy	no 🗆 yes 🗖 🛛	where:
7.	there was blinding of all assessors who measured at least one key outcome	no 🗆 yes 🗖 🛛	where:
8.	measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups	no 🗆 yes 🗖 v	where:
9.	all subjects for whom outcome measures were available received the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was analysed by "intention to treat"	no 🗆 yes 🗖 y	where:
10.	the results of between-group statistical comparisons are reported for at least o key outcome	ne no 🗆 yes 🗖 y	where:
11.	the study provides both point measures and measures of variability for at least one key outcome	no 🗆 yes 🗖 y	where:

Critical Appraisal Skills Programme (CASP) Questions

Answer each question as yes, no, or uncertain.

- Did the study address a clearly focused issue? Did the authors clearly define the population and risk factors? Did the study try to detect a benefit or effect, and was this reported?
 Did the authors use an appropriate method to answer
 - 2. Did the authors use an appropriate method to answer their question? A prognostic study should use a cohort or case report. Are these appropriate methods for the question being reviewed?
 - 3. Was the cohort recruited in an acceptable way? Was the selection of participants explained? Do they represent a defined population, and is that population representative of the population you are working with? Was there anything special about the population? Were all applicable persons included in the study?
 - 4. Was the exposure accurately measured to minimize bias? Were subjective or objective measures used? Objective are preferred to minimize potential bias. Have the measures been validated?
 - 5. Was the outcome accurately measured to minimize bias? Were outcomes measured subjectively or objectively? Has a reliable system been established for detecting the conditions of interest (disease, injury)? Were subjects and assessors blinded to the exposure or outcomes, and in this case, is that important?
 - 6. (a) Have the authors identified all important confounding factors? (b) Have they taken account of the confounding factors in the design or analysis? Are there other confounding factors you can list? Has the author accounted for confounding factors in the design or results?
 - 7. (a) Was the follow-up of subjects complete enough?
 (b) Was the follow-up long enough? Was follow-up thorough, and was it long enough to allow symptoms to present or resolve? Did the author report the number of people lost to follow up on? They may have had a different outcome.

	Are the results of this study clearly stated? What are the bottom line results, the take-home message? Are the r , p , and R^2 values reported?
9.	Are the results precise? Are all relevant values reported in a fashion that allows interpretation?
10.	Do you believe the results? Are the methods well described? Did you see anything flawed in the methods? Could the outcome be a result of confounding variables, bias, or chance?
11.	Can the results be applied to the local population? Are the subjects in the study similar to your patient?
	Do the results of this study fit with other available evidence? Is this the only study that supports the result? Is it in contrast to a greater number of other studies?

Type of evidence	Level of evidence	Description
Systematic review or meta-analysis	I	A synthesis of evidence from all relevant randomized controlled trials.
Randomized con- trolled trial	II	An experiment in which subjects are randomized to a treatment group or control group.
Controlled trial with- out randomization	III	An experiment in which subjects are nonrandomly assigned to a treatment group or control group.
Case-control or cohort study	IV	Case-control study: a comparison of subjects with a condition (case) with those who don't have the condition (control) to determine characteristics that might predict the condition.
		Cohort study: an observation of a group(s) (cohort[s]) to determine the development of an outcome(s) such as a disease.
Systematic review of qualitative or descrip- tive studies	V	A synthesis of evidence from qualitative or descriptive studies to answer a clinical question.
Qualitative or de- scriptive study	VI	Qualitative study: gathers data on human behavior to understand <i>why</i> and <i>how</i> decisions are made.
		Descriptive study: provides background information on the <i>what</i> , <i>where</i> , and <i>when</i> of a topic of interest.
Expert opinion or consensus	VII	Authoritative opinion of expert committee.

Hierarchy of Evidence for Intervention Studies

Adapted with permission from Melnyk BM, Fineout-Overholt E, editors. Evidence-based practice in nursing and healthcare: a guide to best practice [forthcoming]. 2nd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams and Wilkins.

Appendix C: Buffalo Concussion Treadmill Test Protocol

- 1. Patient rates symptoms on Visual Analog Scale (VAS, 0-10).
- 2. Resting heart rate taken
 - a. Use heart rate monitor
 - b. Patient seated `
 - c. After 2 minutes of rest
- 3. Patient begins treadmill test
 - a. Speed set at 3.2 mph
 - i. 3.6 mph if patient is 5'10" or taller
 - b. 0 degree incline
- 4. After each minute, treadmill incline is increased by one degree.
 - a. Continue this process for the first 15 minutes
- 5. After 15 minutes, begin increasing speed.
 - a. 0.4 mph every minute
- 6. Record Heart rate, VAS, and Borg Rating of Perceived Exertion (RPE) every minutea. Patient should be instructed to not push through symptoms
- 7. Stop test at symptom exacerbation (3+ symptom increase from pre-exercise VAS) or voluntary exhaustion (RPE of 17 or above).
- 8. Conclude with 2 minute cool down
- 9. Document heart rate at end of test