Bethel University

Spark

All Electronic Theses and Dissertations

2016

The Use of Nitrous Oxide in the Management of Labor Pain: Safet and Effiacy

Jennifer Ruth Christensen Bethel University

Follow this and additional works at: https://spark.bethel.edu/etd

Part of the Nursing Midwifery Commons

Recommended Citation

Christensen, J. R. (2016). *The Use of Nitrous Oxide in the Management of Labor Pain: Safet and Effiacy* [Master's thesis, Bethel University]. Spark Repository. https://spark.bethel.edu/etd/123

This Master's thesis is brought to you for free and open access by Spark. It has been accepted for inclusion in All Electronic Theses and Dissertations by an authorized administrator of Spark.

THE USE OF NITROUS OXIDE IN MANAGEMENT OF LABOR PAIN:

SAFETY AND EFFICACY

A MASTER'S PROJECT SUBMITTED TO THE GRADUATE FACULTY OF THE GRADUATE SCHOOL BETHEL UNIVERSITY

ΒY

JENNIFER R. CHRISTENSEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN NURSE-MIDWIFERY

1

MAY 2016

BETHEL UNIVERSITY

The Safety and Efficacy of Nitrous Oxide in Labor and Delivery: A Critical Review of the Literature

Jennifer Ruth Christensen

May, 2016

Approvals

Project Advisor Name:	Katrina Wu_APRN, CNM
Project Advisor Signature:	
Second Reader Name:	Dr. Julie Ann Vingers APRN, CNM
Second Reader Signature:	
Director of Graduate Nursing Program Name:	Dr. Jane Wrede APRN, CNM
Director of Graduate Nursing Program Signature:	

Acknowledgements

I would like to start my acknowledgements by thanking my Mom and my Dad. It is with extreme sadness that I say neither of them will be here to read this in person, though I believe they are reading it from heaven. My mother succumbed to Lymphoma just days after turning 62, as she should have been retiring to enjoy life and what she worked so hard earn. Mom was the most beautiful person most people ever met. Everyone who ever met her loved her, and she was an amazing mother. I still remember the pride she had when she found out I would be going to University to Wisconsin – River Falls for my undergrad ... and the disappointment when I first told her I was "taking some time off" and coming home, when I was not far from actually graduating. Those reactions are forever in my head and in my heart, as I have worked so hard to make her proud both in life and in death. I can't believe my mom won't be there in person to see me walk across the stage. It is one of my greatest regrets in life that I did not finish my Bachelor's degree while she was still alive. I love you and miss you Mom and I did this for you!

To my Dad who died of a lost and broken heart, just 18 months after Mom died, from whom I received my character for better or for worse. At a time in my life when I was angry at the sudden loss of both my parents, and floundering around not sure what to do, or where to go next, I remember overhearing my Dad (who had never shown one iota of interest in my academic endeavors) proudly telling his hospice nurse that I was going to school for my Master's degree. I was not at the time. I was slowly, aimlessly working my way towards finishing my Bachelor's degree, but by gosh I'll be darned if I was going to tell anyone that wasn't the truth. Hearing him say that gave me something to live up to, and it gave me new aim.

To my husband John, who has been my best friend and my rock as we have endured the loss of all of our parents in a very short time frame together, and hardship these past two years as

we have traveled this road together, I love you. Without your sacrifices and help, none of this would have been possible. I know we have fought and I have gotten upset with undone chores and messes at times, but you have done an amazing job of keeping everything running while I have been away for days at a time. My city slicker has become quite the little farm boy these last several years, and I would be lost without you. I promise that when this is done, I will never sit behind a computer screen ignoring you for hours on end again.

I owe gratitude to my beautiful pets - my family members who have stood by faithfully while I have locked myself away writing this paper. My beloved Izzy and Ginger have grown to be old and gray in the last two years. The happy-go-lucky pup is no longer a pup and has now suffered a debilitating injury, while I pushed her away through her years of youth, health and playfulness. Dear Frannie, the cat, has had a stroke and can no longer jump on the bed for cuddles.

I would like to thank my advisor Katrina Wu, who had insight into the use of nitrous oxide and was an encouragement throughout the process. Whenever I got stuck throughout both this review as well as during the program in general, I could always count on Katrina to explain perfectly so that I understood, but without outright giving me the answer. Katrina's influence to think of women's health in a more natural way, with her tales of home births and diaphragms and menstrual cups, has been invaluable to me and I will carry with me wherever I go.

It is important to me to thank Jane Wrede as well for believing in me, for being my friend and taking me in and encouraging me when I needed it most.

To my preceptors: Penny Menke, Chillon McKibbon, Renee McNeil, Jane Wrede, and Paige Hardy – There is more to say than what I am able to put on this paper. Each and every one of you has become an integral part of who I am and how I practice. I hope that I can always give

safe, innovative, holistic and downright amazing care to women and live up to everything you have hoped for me.

I would like to thank the staff and patients of Methodist Hospital in St. Louis Park MN for letting me be a part of the inaugural implementation of nitrous oxide in Minnesota, which served to add personal insight, richness and depth to my writing as I worked on this literature review.

I cannot conclude a list of acknowledgements without thanking my past employer, who gave me the motivation that I needed to move on to something bigger and better. This one is for you! On a more serious note, it really was at this job that I first met nurses who were pursuing Master's degrees, including some very good friends whose footsteps I was able to follow in through grad school. Without this exposure, the thought may never have entered my mind.

Three pages later and I realize I have a lot to be thankful for. But my acknowledgments sections would be missing something if I did not take the time to thank my 3000-plus Facebook friends who have had to bear with me, as I have status updated my way through the last two unbelievable years. You have been some of my best supporters and encouragers, even when I way over-posted about my woes!

Very last, but not least in any way – my classmates, my ♥♥♥ -- XOXO always.

Table of Contents

Acknowledgements	
Table of Contents	6
Abstract	8
Chapter One: Introduction	10
Background	10
Nitrous Oxide	11
Statement of Purpose	11
Evidence Demonstrating Need for Critical Review	12
Patient-Controlled Analgesia	12
Anxiolytic	13
Contraindications to Neuraxial Analgesia	14
Contraindications to Parenteral Opioids	14
Adverse Effects to Current Methods of Analgesia	15
Significance to Midwifery	15
Theoretical Framework	16
Summary	17
Chapter Two: Methods	19
Search Strategies Used to Identify Research Studies	19
Inclusion and Exclusion Criteria	19
Summary of Number and Types of Studies	20
Criteria for Evaluating Research Studies	21
Summary	22

Chapter Three: Literature Review and Analysis	23
The Matrix	
Safety	
Mothers	23
Infants	
Special Circumstances	27
Efficacy	
Maternal Satisfaction	
Strengths and Weaknesses	
Summary	35
Chapter Four: Discussion, Implications, and Conclusion	
Safety	
Efficacy	
Implications for Nursing Practice	41
Recommendations for Research	42
Integration of King's Theory of Goal Attainment	
Conclusion	43
Appendix I: Matrix	44
References	

Abstract

Background: All women will experience pain while going through childbirth. The pain is caused by pressure and stretching on the uterus and visceral organs, lack of oxygen during uterine contractions, and musculoskeletal and perineal stretching. Difficulty coping with pain leads to an increase in catecholamines, which further complicates the labor process and can contribute to long term psychological consequences. Up to 75% of women in other countries use nitrous oxide, a colorless odorless gas, to manage their labor pain. In the United States, the options for managing labor pain have consisted of non-pharmacological methods such as massage, breathing and relaxation techniques, hydrotherapy, etc; neuraxial methods ie: epidurals or spinals; and parenteral narcotic administration. Up until about 2015, only five hospitals in the United States offered nitrous oxide and women in the United States have fewer options available for pain management than other countries. Multiple other hospitals and birth centers have begun to offer this option. The American College of Nurse Midwives has indicated that women should have as many safe options for pain management as possible and has encouraged the use of nitrous oxide, as well as continuing research.

Purpose: To evaluate the safety and efficacy of nitrous oxide in labor and delivery.

Results: Twenty-four articles were identified for review and appraised using the Johns Hopkins Research Evidence Appraisal Tool. The major findings of the reviewed literature include that nitrous oxide is safe to use for both mothers and babies. Nitrous oxide is safe to use in special circumstances, such as when epidural or parenteral opioids are contraindicated, for postpartum perineal repair or cephalic version, and has some anxiolytic properties that appear valuable as well. The efficacy of nitrous oxide is less clearly defined due to difficulty in measuring pain and the highly individualized nature of labor and delivery. Efficacy appears highly dependent on

patient expectation, though in populations where nitrous oxide has been used, its use is heavily favored and recommended.

Conclusions: Nitrous oxide is very safe for both mothers and infants. It is cheap, easy to use, and does not require the presence of anesthesia staff to administer. It is easily portable and fast to set up and administer. Discussing pain management goals and expectations will help improve satisfaction, as well as ensuring proper use to achieve maximum effectiveness. Consistent with King's Theory of Goal Attainment, nitrous oxide offers a patient-controlled analgesia option that maximizes a woman's access to, and control of, safe, effective options for managing their pain while in labor.

Implications for Research and Practice: There is considerable room for further, good quality, randomized controlled trials. Areas of study needed include the use of nitrous oxide in specific situations, and especially its use as an anxiolytic. There is enough evidence currently to support the promotion and use of nitrous oxide for pain management in labor and delivery. The use of nitrous oxide fits the practice philosophy of nurse-midwives well, and nurse-midwives are well-suited to champion the use of nitrous oxide in practices of all types, including birth centers and rural settings.

Key Words: Nitrous oxide, Entenox, Nitronex, Patient-controlled analgesia, pain management, anxiolytic, nurse-midwives, labor pain, childbirth, pain management alternatives, safety, efficacy

Chapter 1: Introduction

Background

Since life began, women have been giving birth to future generations and since that time pain has been a part of this process. Labor pain is one of the most acute pains women will experience in their lives (Pasha et al., 2012). Labor pain has been attributed to stretching and pressure on the uterus and visceral organs, lack of oxygen during uterine contractions, and musculoskeletal and perineal stretching (King, Brucker, & Fahey, 2013; Posner, Dy, Black, & Jones, 2013). Every individual will experience pain in a different way, both in terms of what she is feeling, as well as in terms of how she is able to cope. When women have difficulty coping with pain, it leads to an increase in catecholamines, which can reduce the effectiveness of contractions and contribute to fatigue, dystocia, and fetal distress (Adams, Eberhard-Gran, & Eskild, 2012). One concept that is almost universally accepted is that labor and birth are a pain unlike any other experienced in life. Some women may suffer psychological consequences secondary to ineffective coping and disempowerment, long after the actual birth that can be so severe as to contribute to the development of post-traumatic stress disorder (Andersen, Melvaer, Videbech, Lamont, & Joergensen, 2012; Nilsson, Bondas, & Lundgren, 2010; Rooks, 2012).

In the United States, the options for managing labor pain have consisted of nonpharmacological methods such as massage, breathing and relaxation techniques, hydrotherapy, etc; neuraxial methods ie: epidurals or spinals; and parenteral narcotic administration. In other countries, the majority of women use a fourth option – nitrous oxide. About 50-75% of women in the UK and 60% of women in Finland use it. Its use is also common in Australia, New Zealand, and even in Canada (Likis et al., 2014; Rooks 2007).

Nitrous Oxide

Nitrous oxide is a colorless, odorless, tasteless gas composed of two nitrogen atoms and one oxygen atom that can be inhaled in various concentrations with oxygen. The most commonly used concentration during labor today is 50% of each (Stewart & Collins, 2012). It is thought to stimulate endogenous endorphins as well as the release of corticotropins and dopamines, which creates a euphoric effect. Women experience less pain and/or care less about the pain they do experience, along with having decreased anxiety. The effects are experienced usually within 30-60 seconds from initiation. Women remain awake and alert, with full sensory and motor functioning. They may use nitrous continuously, intermittently with their contractions, or they may use it in blocks of time alternating between use and non-use (Stewart & Collins, 2012). It leaves the maternal system as quickly as it enters, via exhalation (Akerman & Dresner, 2009). IV access or continuous fetal monitoring are not required as a result of nitrous oxide use (Stewart & Collins, 2012).

Statement of Purpose

The purpose of this project is to critically appraise scholarly literature to answer the following question: "Is nitrous oxide a safe and effective alternative to current pain management practices for laboring women?" In addition to general safety and effectiveness, the areas of discussion will include whether nitrous oxide is an acceptable alternative to options such as narcotic pain medications and neuraxial pain medications. The project will also seek to consider whether it is an acceptable alternative for when current practices are not feasible, such as when epidurals are contraindicated, or in low resource settings. King's Theory of Goal Attainment will be the underlying theory in this paper, as it seeks to evaluate how the use of nitrous oxide can help women meet their goals and select means with which to meet their goals.

Evidence Demonstrating Need for Critical Review

More than 131 million babies are born worldwide annually, yet many of their mothers will lack the means to effectively cope with their pain. Inexpensive, safe, and simple methods are essential (Rooks, 2012). As stated by the American College of Nurse-Midwives (ACNM), women here in the United States have fewer options for pain control in labor than women in many other countries. The ACNM has also asserted that women have a right to access all safe options for pain relief in labor and birth. Included in the ACNM statement is a provision that where nitrous oxide is being used, there should be accompanying research and ongoing evaluation to add to the existing body of knowledge (American College of Nurse-Midwives, 2010). Nitrous oxide is used successfully and extensively in many countries outside of the United States, and in some areas it is the primary means of pain control. Nitrous oxide has been used in Europe for more than 100 years, with rates of use around 70% (Collins, 2015). It was in England in 1934 that a device for self-administration was developed and it became commonplace throughout Europe. As of 2014, there were only five known centers here in the United States that provided nitrous oxide as an option for laboring women (Likis, et al., 2014). Due to its gain in popularity and the fact that it is on the verge of a boom here in the United States, the Agency for Healthcare Research and Quality (AHRQ) identified a significant lack of quality research on the subject (AHRQ, 2011). The potential benefits and usefulness of nitrous oxide here in the United States, along with its impending widespread use, necessitates a critical review of the literature. Specific needs for nitrous oxide are discussed in the following sections.

Patient-controlled Analgesia. Nitrous oxide is a patient controlled method of analgesia giving patients more of a sense of control. Patient-controlled analgesia (PCA) is a conceptual framework that is not restricted to a single class of analgesics, or a single mode of delivery, but

rather any analgesic that is administered on immediate patient demand in sufficient quantities (Grass, 2005). In searching the literature regarding PCA in labor, the vast majority of the information available is focused on PCA epidurals. This is because currently, PCA is the only choice available for patient-controlled analgesia for most laboring mothers in the United States, and even those are limited in the amount of control the patient has. Most are administered with a continuous infusion, and even if they are a bolus only delivery program, the effects are relatively slow acting and the patient is not really at liberty to be free of the epidural catheter, monitoring, and other restrictions at will. Generally speaking, once an epidural is in place, there is little option to reverse it. The other major option to women is an intermittent parenteral narcotic administration such as fentanyl, nalbuphine, or butorphanol. While these provide periods of strong pain control, there are strict administration guidelines and patients are reliant on healthcare providers to administer these. The degree of empowerment associated with the self-administration of nitrous oxide is one factor that may be important in promoting and enhancing women's satisfaction (Collins, 2015).

Anxiolytic. Nitrous oxide is an anxiolytic. The presence of stress, anxiety, catecholomines, and epinephrine has been shown to have a definitive effect on labor (Adams et al., 2012). Catecholamines decrease the effectiveness of contractions and lead to dystocia and maternal exhaustion. Additionally, the fight or flight response caused by these stress hormones diverts oxygen-rich blood from the uterus and causes non-reassuring fetal heart tones (Levinson & Schnider, 1979). It also enhances the perception of post-traumatic stress disorder post-partum (Lederman, Lederman, & McCann, 1985). Adding a labor-coping option that helps to reduce anxiety, that could be used alone or even in conjunction with current options, could be profound.

Contraindications to Neuraxial Analgesia. Often, an epidural analgesia is not an option, such as when spina bifida or Harrington Rods are present. Patients may also have such extreme anxiety about the procedure that they are not able to tolerate it. Although epidural analgesia for labor is generally reported to be safe in most cases where there is a history of spinal surgery, studies have shown increased difficulty with placement and an increased rate of failed or inadequate anesthesia in laboring women, as compared to the general population of women who do not have a history of spinal surgery (Ko & Leffert, 2009). As medicine improves at managing neural tube defects, increasingly more women born with these defects are reaching childbearing age and achieving pregnancy. Neuraxial pain management in these women is challenging at best, due to underlying skeletal, musculoskeletal, and nervous system deformities and may not be an option (Kuckowski, 2007). Although cesarean section and general anesthesia is necessitated in many of these women, many others are still able to deliver vaginally and they are in need of pain management options. Additionally, there are several other contraindications to a labor epidural, which include low platelet levels, septicemia, progressive neurological diseases such as multiple sclerosis, elevated intracranial pressure and hypovolemia. It also includes the presence of conditions that affect the cardiac output, such as aortic stenosis (Silva & Halpern, 2010). Lastly, another major contraindication to epidural placement is refusal or inability of the patient to cooperate with the procedure and maintain proper positioning, which may be caused by labor pains, or patient anxiety about the procedure. Either way, it leaves the patient with one less option for pain relief if this situation occurs (Poole, 2003).

Contraindications to Parenteral Opioids. Parenteral opioids are one of the other major options for labor pain management after neuraxial analgesia. Parenteral opioids may also be contraindicated for many women, which leaves them with few remaining options. Allergy or

sensitivity to narcotic analgesia is an absolute contraindication. Many women have also found themselves coping well with labor up until the last few centimeters of dilation, when they could really use something for pain. At this stage of dilation, they are unable to use parenteral opioids because of the risk for respiratory depression in their newborns, should the narcotics be administered too close to delivery (Rooks, 2012). Additionally, if water birth is desired, women may be faced with having to abandon their hopes of water birth entirely if they choose to receive parenteral opioids.

Adverse effects of current methods of analgesia. Both parenteral opioid labor analgesia, as well as epidural labor analgesia, are associated with numerous adverse effects which women may prefer to avoid. These are well studied in the literature and far too numerous to go into detail in this discussion. However, among the reported side effects are lower oneminute Apgar scores and increased need for naloxone; prolonged second stage, more frequent need for oxytocin augmentation, hypotension, and maternal fever (Anderson, 2011; Leighton & Halpern, 2002). Also, women may have concerns about the effects that analgesia could have on breastfeeding. There is data that confirms both parenteral opioids, as well as epidurals, may be detrimental to early breastfeeding (Sinusas & Gagliardi, 2001).

Significance to Midwifery

Nitrous oxide has the potential to have a very profound benefit to the practice of nursemidwifery. Conversely nurse-midwifery is perfectly positioned to promote the use of nitrous oxide. As a matter of course, patients who seek care outside of traditional obstetrical care and choose midwives may also be likely to seek out alternative methods of pain management. Rooks (2007, p. 187) stated, "nitrous oxide complements and is synergistic with the midwifery model of care." Currently the ACNM is the only professional organization that has addressed the use of

nitrous oxide in the United States (Collins, 2015). In their position statement, the ACNM has stated that midwives should play a role in the administration of nitrous oxide, as well as contribute to research and evaluation. (ACNM, 2010). Nitrous oxide can be administered without the oversight of an anesthesiologist. It also has the benefit of being easily portable. Therefore, it is especially useful to midwives who deliver in birth centers, or at home. Nitrous oxide can be particularly beneficial in these settings, as laboring women would not have access to all the pharmacological options for pain available in hospital settings. In fact, many rural hospitals right here in the United States do not staff Certified Registered Nurse Anesthetists, or Anesthesiologists twenty-four hours a day, or they may serve a cluster of hospitals and thus are not always readily available to administer epidural anesthesia. Thus nitrous oxide is perfectly suited to the smaller practices of many midwives today, who also strive to provide their patients with as many options in pain relief as possible.

Theoretical Framework

King's Theory of Goal Attainment states that human beings are rational and sentient. It states that human beings have the ability to perceive, think, feel, choose, set goals, and select means to achieve those goals and make decisions. The theory asserts that humans have three fundamental needs which are the need for health information when it can be used, the need for care that seeks to prevent illness, and the need for care when he or she is unable to care for oneself (Nursing Theory, 2015).

King's Theory can be applied to labor and birth in that women inherently understand that labor and birth will involve some kind of pain. The perception of pain is different for all women, but women all consider how they will cope during the labor process, and what resources they will utilize. They will likely have an ideal for how they would like their labor to progress and

what they want to experience, or not experience. They use whatever information is available to them to make decisions on how best to manage their pain for their unique preferences and experiences. They set goals. Women need to have options available to them that are safe and that do not cause greater harm to them and their newborns. Lastly, they need to know that if and when they are not able to think clearly while in the midst of labor, their caretaker, the midwife, will provide for them in a matter consistent with their original plans and current needs. Thus King's Theory of Goal Attainment is very applicable to the use of nitrous oxide because it gives women another option. Not only an option that is shown to be safe, effective, and less invasive with less side effects to them and their baby, nitrous oxide also provides an element of selfcontrol, even from one contraction to the next, that is unparalleled in other methods.

Summary

Nitrous oxide is widely used in other countries and is rapidly spreading here in the United States, as is the practice of midwifery. Yet there is a lack of comprehensive resources regarding its use, especially by nurse-midwives in the non-traditional settings they often practice in. This chapter considered pain in labor and introduced nitrous oxide. Nitrous oxide is a gas, which is mixed with oxygen and administered during labor and/or other painful procedures such as postpartum perineal repair. It is used as an alternative to the current methods of pain management, such as parenteral opioids or epidural, which may be contraindicated or have unacceptable side effects. The ACNM has expressed their support of nitrous oxide in congruence with the midwifery model of care. The need for a critical review of the literature was discussed. Lastly, King's Theory of Goal Attainment as it is applied to labor and delivery, pain management, and nitrous oxide was discussed.

Chapter 2 describes the methods used for this critical appraisal of the literature, and includes search strategies, inclusion and exclusion criteria, a summary of the number and types of research selected for the review, and criteria for evaluating research studies. Chapter 3 provides a review and analysis of the evidence and includes a synthesis of major findings, as well as strengths and weaknesses of the studies. Chapter 4 concludes with a synthesis of the literature answering the research question, current trends and gaps in the literature, implications for pain midwifery and recommendations for further research.

Chapter Two: Methods

This chapter will review the process used in the critical appraisal of the literature pertaining to the practice question of, "is nitrous oxide a safe and effective alternative to current pain management practices for laboring women?" Key words and phrases were chosen and a search of multiple databases was conducted. Through an inclusion and exclusion process twentyfour of the most salient articles were chosen for critique.

Search Strategies Used to Identify Research Studies

This review of the literature covers the years from 1969-2015. Seventeen out of twentyfour of the articles were from the time from of 2000-2015, but some of the earlier studies were evaluated due to their significance, and because much of the research in relation to nitrous oxide was conducted at the latter part of the last century. The following databases were used: Academic Search Premier, Scopus, CINAHL, Google Scholar, PubMed/MEDLINE, Cochrane Database of Systematic Reviews, and Science Direct. Key words and phrases used in the search process included: Nitrous Oxide, Entonox, Nitronex, patient-controlled analgesia, safety of nitrous oxide, Efficacy of nitrous oxide, anxiety in labor, and use of nitrous oxide in rural settings. In addition, references within the research articles were analyzed yielding additional literature for review.

Inclusion and Exclusion Criteria

The initial inclusion criteria required studies to have been completed in the last 10 years and to be available in English. Earlier published studies were added after the initial inclusion/exclusion process, according to their pertinence to the topic. These additional studies have publication dates of 1969 to 1999. Included were articles that compared nitrous oxide to other modalities of pain management not commonly used her in the United States, as long as a

control was also present. These include the use of enflurane, sevoflurane, pethidine, meperidine, and remifentanil. Articles were initially evaluated on title and abstract to determine if inclusion criteria were met.

Along with the inclusion criteria, multiple exclusion factors were utilized in the identification of appropriate scholarly articles. Excluded were articles that were not original research, such as professional opinions, guidelines, literature reviews, meta-analysis and statements of policy, although their references were searched for additional research articles. Also excluded were articles whose focus did not fit the purpose of the review, such as those that focused exclusively on safety for care providers. Multiple articles were also excluded pertaining to the use of nitrous oxide in the field of dentistry, as well as pediatric pain management, except in some cases where their results were generalizable to the obstetric population. Articles, which compared different percentages of nitrous oxide, were not included either, unless they included a control against no treatment and the 50% concentration, which is the concentration now used in labor settings in the United States. Articles were further reviewed to verify applicability to labor and birth, infant outcomes, breastfeeding, painful procedures such as IV starts, versions, and perineal repair, and to the practice of midwifery.

Summary of Number and Type of Studies

The abstracts of the original forty-five articles were evaluated for pertinence to the topic of interest and narrowed down to twenty-four articles. The matrix includes nine randomized controlled studies, one survey, one prospective comparative study, one retrospective review, one case study, one observational study, one non-experimental descriptive comparative study, three cross-sectional studies, three prospective longitudinal studies, two cohort studies, and one random quasi-experimental crossover study. The review includes research from the United States

as well as Iran, France, Australia, Ireland, Sweden, Ecuador, Canada, and the United Kingdom. The articles were categorized using the criteria from Johns Hopkins (Dearholt & Dang, 2012):

- Level I, experimental studies: (n=8)
- Level II, quasi-experimental studies: (n=5)
- Level III, non-experimental studies: (n=9)
- Level IV, clinical practice guidelines: (n=0)
- Level V, non-research literature reviews and case studies: (n=2)

Criteria for Evaluating Research Studies

The final twenty-four articles were evaluated using the Johns Hopkins Research Evidence Appraisal Tool, in order to critique the strengths and quality of the evidence presented in each article (Dearholt & Dang, 2012). Evidence levels were determined using an I-IV scale. Level I studies included experimental, randomized controlled trials (RCTs) and systematic reviews of RCTS. Level II studies include quasi-experimental studies and systematic reviews that include RCTs with the quasi-experimental or quasi-experimental studies only. Level III studies include non-experimental studies or systematic reviews that question a combination of RCTs, quasiexperimental studies and non-experimental, or qualitative studies. Level IV evidence includes the opinion of respected authorities and/or nationally recognized expert committees/consensus panes based on scientific evidence (Dearholt & Dang, 2012).

According to the John Hopkins Model, the quality of the reviewed article was then determined to be of high quality, good quality, or low quality based on the criteria associated with each level. Research studies are considered good quality if there are reasonably consistent results, have a sufficient sample size, design, some control, and a fairly definitive conclusion.

They are considered low quality if there is little evidence, with inconsistent results, insufficient sample size for the study, and if conclusions cannot be drawn (Dearholt & Dang, 2012).

The articles were analyzed based on their purpose, sample size, design, measurement, results/conclusions, and recommendations. They were also analyzed to determine if they adequately addressed the research question. In order to determine the quality of the evidence, the articles were required to have consistent results, a sufficient sample size, adequate control, and definitive conclusions. In addition, consistent recommendations reflective of the literature review were included (Dearholt & Dang, 2012).

Summary

A database search was conducted using the Bethel University library services to provide a large sample of scholarly articles to undergo an inclusion and exclusion process. The final twenty-four articles, from multiple study designs, were chosen for appraisal and inclusion in the matrix. The Johns Hopkins Research Evidence Appraisal Tools were used during the analysis to evaluate the quality and strength of the chosen studies. This chapter described the search strategies and evaluation methods used for this critical appraisal of the literature.

Chapter Three: Literature Review and Analysis

Chapter three synthesizes the major findings of the literature as it pertains to the use of nitrous oxide in the labor and delivery setting. Weaknesses and strengths of several of the top articles in each subcategory will be discussed. The major findings of the reviewed literature include that nitrous oxide was safe to use for mothers and their infants. It is also safe in certain special circumstances pertaining to the labor and delivery sitting. Efficacy is highly dependent on what the patient's goal for pain management is, though it does appear to help women cope with labor pain. Lastly, women usually appear to be satisfied with the pain management nitrous oxide provides and would use it again.

The Matrix

The matrix includes nine randomized controlled studies, one survey, one prospective comparative study, one retrospective review, one case study, one observational study, one non-experimental descriptive comparative study, three cross-sectional studies, three prospective longitudinal studies, two cohort studies, and one random quasi-experimental crossover study. Each scholarly article was appraised using the Johns Hopkins Research Evidence Appraisal Tool (Dearholt & Dang, 2012). The quality and evidence of each individual article was identified through the appraisal process, and listed within the matrix. The study design, methods, sample size, strengths, limitations, findings, and nursing implications also are addressed in the matrix for each article.

Safety

Mothers. Nitrous oxide has proven to be safe to use for both mothers and infants. In one very large study of 35,828 administrations there were 1,581 adverse events, which accounts for 4.4% of the total uses. Of these 86% were limited to neuropsychiatric, such as agitation and

euphoria, and gastrointestinal disorders, such as nausea and vomiting (Onody, Gil, & Hennequin, 2006). There were 18 serious adverse events, which could not be accounted for by problems with the mixture of the gas. These included four O2 desaturations, one laryngospasm, one cardiac arrest, and two cases of convulsions. The cardiac arrest and one of the desaturations were linked to inappropriate use and insufficient surveillance.

The above referenced study by Onody, Gil, and Hannequin was appraised to be of a grade A and is considered a level III, in terms of the strength of the evidence. This study is the largest pharmacological trial yet reported on safety and conditions and use of this premix gas, when considered as a drug. As part of the licensing agreement with the French government, all administrations of the 50% N2O/O2 premix product known as Kalinox over a period of 3.5 years, from June 1998 to January 2002, were followed by obligation through the completion of a data sheet. Thus, the strength of this study lies in its large sample size and compulsory participation. The study was limited by the lack of an experimental design.

In looking for a randomized controlled trial regarding the safety of nitrous oxide for mothers, Carstoniu et al. (1994) must be considered. Carstoniu et al. conducted a level I study whose aim was to evaluate the effects of nitrous oxide on the oxygen concentration of women who used it in the first stage of labor. Even though the oxygen concentration of room air is 21%, while the commonly administered concentration of nitrous oxide is 50% with 50% oxygen, it remains an ongoing concern that use of nitrous oxide may somehow negatively affect maternal oxygen concentrations. Carstoniu et al. were able to prove that nitrous oxide use did not have this effect and that it was safe for use. This study was limited by the small sample size of twenty-nine and therefore appraised as a grade B.

Agah, Baghani, Tali, and Tabarraei, (2014) is a good sample to discuss in this section as well, because in addition to general safety, they also look at the propensity of nitrous oxide to have some kind of an effect on the labor pattern. The study was a randomized controlled trial in which study subjects were divided into groups and received specific training on the use of the nitrous oxide. The major limitation of the study is they did not compare the use of nitrous oxide to a control. They compared the intermittent method of nitrous oxide use, with the continuous method. The study is valuable nonetheless, because they were able to demonstrate there was no overall safety risk with increasing use, nor was there any increased risk to the events of labor and delivery. This included duration of the second stage of labor, severity of perineal laceration, rate of assisted vaginal birth, or uterine atony. The study appraised as a level I. It was a grade B for its smaller sample size.

Similar findings were repeated in several articles in the matrix (Annequin, Carbajal, Chauvin, Gall, Tourniaire, & Murat, 2000; Khadem, Zirak, Soltani, Sahebdelfar, Sepehri Shamloo, & Ebrahimzadeh, 2013; Mcguinnes & Rosen, 1984; Talebi, Nourozi, Jamilian, Baharfar, & Eghtesadi-Araghi, 2009; Pita et al., 2012; Rosenstein, Flood, Thiet, Nakagawa, Bishop, & Cheng, 2014; Pasha, Basirat, Hajahmadi, Bakhtiari, Faramarzi, & Salmalian, 2012). The findings of multiple good quality articles provide strength to the concept that use of nitrous oxide is safe for women.

Infants. Regarding the safety of nitrous oxide for the neonate, there appears to be even less risk involved. Stefani et al. (1982) conducted a randomized controlled trial of sixty-one healthy full term infants and found no difference in five-minute apgars, acid-base status, or any neurological status at two and twenty-four hours between infants in the nitrous oxide group, and infants in the control group. Infants were tested at various time intervals using the Early

Neonatal Behavioral Scale and the Neurologic and Adaptive Capacity score, as well as the traditional Apgar scoring. This study was appraised to be of a Grade B and is considered a level I in terms of the strength of the evidence, primarily due to the small sample size of sixty-one. Although an older study that was completed in 1982, the study is well designed and the data well analyzed, therefore the results remain valid today. The strength of the study is that it compared the use of nitrous oxide to a control group that received no intervention. The study is also valuable because it is one of the few studies whose primary purpose was to evaluate safety in newborns. Repeating the study today with a larger sample size would strengthen the findings.

Multiple other studies included in the matrix (Agah et al., 2014; Harrison, Shore, Woods, Mathews, Gardiner, & Unwin, 1987; Talebi et al., 2009) concluded with the same results – that nitrous oxide appears to have little to no effect on infants. These studies range in sample size from 100 to 534 participants. They included two randomized controlled trials and a non-experimental descriptive comparative study and appraised as a grade A or B. They all found that the use of nitrous oxide did not have any effect on one or five minute Apgar scores of newborn infants.

In looking for a more current study, Rosenstein et al. (2014) provided useful data with a study whose primary focus was effect on newborns. The primary outcome was admission to the NICU, although secondary outcomes such as Apgar scores and acidemia were also collected and evaluated. The study confirmed there were no significant differences in the odds of admission to the NICU, acidemia, or five minute Apgar score less than seven, and that its use was safe for newborns. The study did appraise at a Level III, as it was a cohort study and did not include an experimental design. The strength is that with 6,192 participants, it was a large study.

Nonetheless, it appraised as a grade B, primarily because of the lack of a control and the fact the study included participants whose mothers had also received epidurals, for example.

Special Circumstances. One of the intriguing aspects of nitrous oxide is that it can be used in special circumstances. Through repeated studies the safety has continued to be demonstrated in all cases. Agah et al. (2014) reported nitrous oxide is filtered completely by the lungs, meaning it is particularly useful in instances of hepatic and renal impairment. Chi, Lee, England, Hingorani, Paintsil, and Kadir, (2009) demonstrated its safety in women with inherited bleeding disorders, which would otherwise prevent women from using an epidural for pain management. Pita et al. (2012) reported no increased risk in low-income settings, which was also verified by Agah et al. who reported nitrous oxide was safe and appropriate in all social classes. Collins (2015) reported on the anxiolytic benefits of nitrous oxide. Burgos et al. (2013) reported no additional complications when nitrous oxide was used in external cephalic version.

Of these special circumstances Berlit, Tuschy, Brade, Mayer, Kehl, and Sütterlin, (2013) reported on what is likely to be one of the most common and practical uses of nitrous oxide for alternative purposes, which is for postpartum perineal repair. Berlit et al. compared the effectiveness of nitrous oxide with the traditional method of infiltration with anesthesia. Pain during repair was determined using a questionnaire and they were able to demonstrate that there was no statistical difference between the two methods. Additionally, the nitrous oxide was well tolerated with no severe side effects, and only 8% of the participants had to abandon use of the nitrous oxide completely, which was due to non-tolerance of the mask. In these situations the patients were then able to revert to traditional infiltrative techniques. The benefits to the use of nitrous oxide is that it is self-administered, it avoids the edema of the tissue and wound edges that may be caused by infiltration of lidocaine, and it avoids the procedural pain of infiltration

that is associated with lidocaine. The study was a level I randomized controlled trial, though appraised at grade B for its relatively small sample size of 100 women. Further studies would help to strengthen the claim regarding the usefulness of nitrous oxide for perineal repair, though there certainly does not appear to be any increased safety concerns inherent to its specific use.

Another attractive quality of nitrous oxide is its safety profile for use when epidural is contraindicated because of inherited bleeding disorders, which predisposes women to epidural or spinal hematoma and permanent neurological deficit (Chi et al., 2009). Chi et al. studied the use of analgesics in a sample of sixty-seven women who had conditions such as factor XI deficiency, von Willebrand disease, platelet function disorders, and a handful of other clotting disorders. Forty-one of the women used Entonox at some point in their labor. No complications were recorded and the authors found it useful, as administration is noninvasive. This study was a retrospective review of case notes after the fact, which earned it a designation as a level V study. It appraised to be a grade B. The topic was difficult to study because of the rare prevalence of the disorders. Including women with platelet disorders as a result of preeclampsia or HELLP syndrome would be especially useful to the field of obstetrics in future studies.

Efficacy

Results regarding the efficacy of nitrous oxide for laboring women are less consistent and highly dependent on the nature of the study, although findings are overall favorable. The study by Talebi et al. (2009) is a randomized controlled trial that compared the use of nitrous oxide in labor with oxygen as the control. Using a Visual Analogue Scale, Talebi et al. found that pain scores were significantly lower when 50% nitrous oxide was used. This study was appraised to be a grade A study and is considered a level I study. The strength of this study lies in the fact that it is a randomized controlled trial that compares the use of nitrous oxide against a control.

Limitations in the study were related to difficulty in timing the administration of nitrous oxide, which resulted in widely varying bloodstream levels at any given time, as well as the subjectiveness of pain perception. The study could have been improved by continuing to reassess pain measurements at periods of time after delivery.

Pita et al. (2012) presented a study that is a great contribution, not only for the information it provides on efficacy, but also because it discusses the information from the context of a low-income hospital setting a midwife may by likely to work in. The study was performed in a low-income hospital in Ecuador. Patients rated pain on a ten-point Visual Analog Scale at baseline, one hour after initiation and during episiotomy repair. Pain decreased from a score of 8.9 out of 10 at baseline, to a score of 4.9 after one hour. Pain score during episiotomy repair was 3.1 on the Visual Analog Scale. The study is limited by the fact it was a Level II study, in which it was designed as an observational study and there was no control. The sample size of 126 was not overly large either. Hence it appraised at a grade B in quality. That said, the authors concluded that nitrous oxide was, "devoid of complications, does not require high technology or qualified personnel (although appropriate training is needed and rapidly obtained), is affordable, does not increase obstetrical surgical complications, and enables women to make decisions and control pain."

One of the larger studies concerning the efficacy of nitrous oxide was by Morgan, Bulpitt, Clifton, & Lewis (1982). The study was conducted in 1982 and thus is considered outdated, although the study was well designed and its data is still applicable today. The study consisted of 1,000 women who gave birth in London. They were asked to rate their pain from zero to 100 on a 10 cm linear analogue scale, within 48 hours after birth. The average pain scores

for women who used nitrous oxide was 61, as compared to 70 for women who did not use any form of analgesia. This study appraised as a level III and grade B.

Similar results were found in several articles in the matrix, which provides strength to the argument that nitrous does provide pain relief when compared to a control or no intervention (Dammer et al, 2014; McGuiness & Rosen, 1984; & Pasha et al., 2012).

One study with findings that were in direct contradiction of the above findings was by Carstoniu et al. (1994) that found there was no statistically significant difference in pain when nitrous oxide was used versus compressed air. The limitations of this study were that it was a much smaller study of only 26 patients, making it a Grade B in quality, though it was still a level I in terms of strength of evidence. It is also a much older study, having occurred in 1994. The design of the study was a randomized, double-blind, cross-over, placebo controlled study. The trial began when each subject requested analagesia. There were two groups, and subjects in each group inhaled either nitrous oxide or compressed air for a series of five contractions, and then switched for the next series of contractions. The second group did them in the opposite order. They collected data at various points, including pain rating, and found no significant differences in pain scores between the nitrous oxide and the compressed. In considering more current knowledge, one possible explanation for the results of this study is that five contractions was not enough time for the study subjects to adequately adjust their intermittent administration timing, or to make an overall evaluation of the effectiveness.

One of the recurring themes in the literature is the comparison of nitrous oxide to other modes of pain relief such as epidurals and IV narcotics. An example is the 2013 randomized controlled trial by Khadem et al. (2013) which found pain scores were lower in all stages of labor when an epidural was used, than when nitrous oxide was used. That said, they argued that it

depends on the patient's goals for the labor. Therefore, if a patient desires a painless labor, an epidural is the best choice. But if neuraxial pain management is not desired, nitrous oxide is a good option. This study by Khadem et al. was a randomized controlled trial with a sample size of 84 women. Half of the women inhaled nitrous oxide at the beginning of each contraction and half of them received an epidural. They rated their pain using a 0-10 scale at multiple points before and during the intervention. The study was appraised to be a grade B and was a level I in terms of strength and evidence. The limitations of the study were that it was performed in Iran and it is difficult to tell for sure that everything was adequately controlled. Other studies in the matrix compared nitrous oxide to other interventions, as well with similar findings and recommendations (Morgan et al 1982; Harrison et al., 1987; Duarte, McNeill, Drummond, & Tiplady, 2008; Waldenstrom & Irestedt, 2006; Agah et al. 2014; Mcguinnes & Rosen, 1984).

Maternal Satisfaction. Several of the studies in the matrix evaluated maternal satisfaction or preferences as a variation of efficacy. The study by Dammer et al (2014) was one such study. The study was an observational study. Patient satisfaction was documented based on the patient's subjective statements on tolerance, side effects, and whether she would choose this method of analgesia again. The primary outcome measured was the likelihood that the patient would use the inhaled analgesia again. A total of 68% of the women indicated they were "quite to very" likely to use nitrous oxide again. The findings of the study indicated that women were more likely to choose nitrous oxide again if they tolerated it well, used it in second stage, or were bearing down. The study appraised as a Level III and Grade B. One limitation to the design of the study was that by default, it was primarily limited to patients who had either opted out of epidural analgesia, or were ineligible. Many were critical of epidural anesthesia and/or had fear of complications as their primary reason for refusing it. Therefore the study sample likely

included a fair amount of preexisting bias. This presents an opportunity for improvement in future studies where researchers could better select their sample from the general population.

In the discussion regarding maternal satisfaction, it is prudent to include the study by Henry and Nand (2004), which was conducted on a sample of 496 women who delivered at the Royal Hospital for Women in Sydney Australia. The study was a cross-sectional design in which women were handed a survey to be completed in the first week postpartum. This study did demonstrate similar findings to the one by Dammer et al (2014). Henry and Nand (2004) found that 65% of the women would "definitely" or "probably" use nitrous oxide again. This was compared to 82% for an epidural and 79% for natural methods. A strength of the study was that although there were numerous variants that were not controlled, such as place of delivery (delivery suite versus birth center), demographic factors, differences in providers, etc., they were at least well accounted for, with date broken down for each subsection. This study was a level III study that was appraised to be a grade B. A limitation of this study is that it was not specific to nitrous oxide. They were evaluating intrapartum pain management in general. The study could be improved by further limiting variables, while at the same time expanding the scope of the study to include a larger sample.

Waldenstrom (1999) should be discussed in this section as well, particularly because of the study findings that nitrous oxide was associated with a less positive birth experience. Waldonstrom also performed a cross-sectional study in which women completed a questionnaire in early pregnancy, as well as two months postpartum. The principle outcome "overall experience of labor and birth" was measured, as well as pain, anxiety, freedom of expression, involvement, midwife, and partner support. In this study, the use of nitrous oxide was associated with dissatisfaction with the birth experience, which illustrates the complexity of not only

childbirth, but of the study process and how the study aim and approach to the study can influence the results. Waldonstrom hypothesizes there is some other factor that predisposes women to the use of nitrous oxide, as well as affects their satisfaction with birth. This could be related to a personality feature for example. Or, it could also be related to the methodological problems associated with the measurement of pain. The study also demonstrated that the presence of pain, at all, was associated with a less positive birth experience. Similar to the other studies that evaluated this measure, it also appraised at a level III grade B, which highlights the lack of good, randomized controlled trials and the difficulty in quantifying this aspect of the labor and delivery experience. A relative strength of this study is that with a sample size of 1,111 participants, it one of the larger studies available.

Along the same lines, Lindholm & Hildingsson (2015) found that nitrous oxide was the most preferred or recommended method of pain control. The caveat in the study by Lindholm & Hildingsson is that it was conducted in Sweden, which is a country that has been using nitrous oxide for much longer and it is much more prevalent then here in the United States. So it assumed there was a cultural bias present. That said, it is an interesting study and worth mentioning because it gives insight into what women prefer and recommend to each other, even when they have all of the options available to them that women in the United States do, including access to epidurals. This was a prospective longitudinal study of 536 women who completed three questionnaires about their demographic background, preferences for labor and delivery, and what they actually received and what their experiences were. Nitrous oxide was the most preferred at 79% of the sample, as well as the most received, which was also 79%. A total of 62% of the women reported their experience as being positive with use of an epidural, having the strongest correlation with the least positive birth experience. The study appraised as a level III

for its non-experimental design and is a grade B. One of the recommendations from the study is that providers need to discuss preferences with women, because they had better overall birth experiences when they got what they had planned on and when it included nitrous oxide.

Strengths and Weaknesses

The articles in the matrix were predominantly of good quality. Four articles appraised as high quality and one article appraised as low quality using the Johns Hopkins Research Evidence Appraisal Tool. A low quality rating was given predominantly due to small sample size. Significant variations in the articles were present, in terms of study design. There were eight level I articles, five level II articles, eight level III articles and two level V articles. The study involved professionals from several disciplines including obstetrics, midwifery, and anesthesia. One study was from 1969, but was included because it demonstrated the safety of nitrous oxide and was otherwise of appropriate design and size.

Selection of articles was limited due to the lack of studies that answered the research question "is nitrous oxide a safe and effective alternative to current pain management practices for laboring women?" Often articles that studied nitrous oxide did not compare it to a control and/or compared it to other gases or substances not commonly used in obstetrics today. There was also a wide variety of subtopics studied such as safety for women, safety for newborns, women's preferences, efficacy, etc., as well as a large variety of including and excluding conditions such as parity, age, obstetrical history, stage of labor initiated, and prior pain medication use.

The critical appraisal of the evidence was strengthened by the inclusion of original research from obstetrics, midwifery, and anesthesia. Several of the studies were strengthened by large sample sizes. Seven studies had over 100 participants and seven studies had 1,000 or more.

Despite struggling to find applicable current research, about half of the articles (14) are recent, having been published in the last 10 years. Perhaps the greatest strength of the articles was in the similarity of findings regarding the safety of nitrous oxide. Without fail, study after study found that nitrous oxide was safe, with very mild side effects noted.

Lastly several articles were not from the United States. These could be viewed as strengths or weaknesses and including cultural factors and viewpoints is important. However, it could also be considered a limitation, as researchers and their values differ from one culture to another.

Summary

In this chapter, the major findings of the appraised articles were presented in a way that demonstrated answers to the question: "Is nitrous oxide a safe and effective alternative to current pain management practices for laboring women?" A total of 24 research articles were evaluated and cross-referenced. Overwhelmingly, the evidence indicates that nitrous oxide is a safe choice for laboring women, their infants, and may also be used safely for alternative applications in the labor and delivery setting, including when other methods of analgesia may be contraindicated. Efficacy is more difficult to measure, due to the highly subjective nature of pain and childbirth. In essence, efficacy in the studies was dependent on what women's expectations were going into childbirth, as well as what controls or other variables the nitrous oxide was being compared to. The majority of the data did find nitrous oxide to provide some amount of pain relief. Strengths and weaknesses of the research were then discussed. Primarily the weakness of the data was a wide variety of study designs and aims, which often did not directly answer the study question. Current data was also difficult to come by, although several of the older studies were of good design and control, and contained data that contributed to the current knowledge. Lastly, a matrix
of the articles was included, which summarized the studies and organized them in a manner for easy comparison and analysis. NITROUS OXIDE

Chapter IV: Discussion, Implications, and Conclusions

The original question of interest was "is nitrous oxide a safe and effective alternative to current pain management practices for laboring women"? The Johns Hopkins Research Evidence Appraisal Tool was used to appraise 24 scholarly articles related to these topics. The findings were then synthesized to evaluate trends and gaps in the literature, and identify implications for changes to nursing practice and future research needs. King's Theory of Goal Attainment was applied to the use of nitrous oxide in the labor and delivery setting, as it allows for mothers to have safe, effective choices for the management of their pain, with nitrous oxide also having the added element of self-administration.

Safety

The use of nitrous oxide in the labor and delivery setting has proven to be safe. This includes not only uncomplicated labor and deliveries, but also in specific scenarios such as postpartum perineal repair, external cephalic versions, or when contraindications to neuraxial methods are present, such as in the case of inherited bleeding disorders.

Onody et al. (2006) conducted a large study in which they collected information from all of the women in France who used nitrous oxide in the specified time period. The sample size was over 35,000. In this study there were only eighteen serious adverse effects. Carstoniu et al. (1994) conducted a study evaluating the effects of nitrous oxide on the oxygen saturations of laboring women and was unable to find any correlation or detrimental effects to the use of nitrous oxide, which could be related to the fact that nitrous oxide is administered with 50% oxygen - a concentration that is higher than room air. Agah et al.'s (2014) contribution to the research included proving there was no overall safety risk with increasing use, and no untoward effects on the length of labor and delivery, severity of perineal laceration, rate of unassisted

NITROUS OXIDE

vaginal birth or uterine atony. The safety of nitrous oxide was reiterated repeatedly by almost all of the studies in the matrix, regardless of whether safety was their primary outcome or was just an incidental finding in the study (Annequin et al., 2000; Berlit et al., 2013; Burgos et al., 2013; Chi et al., 2009; Dammer et al., 2104; Harrison et al., 1987; Mcguinness & Rosen, 1984; Pasha et al., 2012; Pita et al., 2012; Rosenstein et al., 2014).

Nitrous oxide has also been shown to have little to no effect on newborns (Harrison et al., 1987; Khadem at al., 2013; Rosenstein et al., 2014; Stefani et al., 1982) These findings were consistent in multiple studies that appraised to be of good quality in the John's Hopkins Research Evidence Appraisal Tool. There were two studies that specifically looked at the effects of nitrous oxide on infants. The first study that was considered was the one by Stefani et al. (1982). The study was one of the oldest in the matrix, but did have good design. It was a randomized controlled trial with 61 healthy full-term infants. They demonstrated there was no difference in five minute apgars, acid-base balance, and there were no differences in neurological status at two and 24 hours of age, between the control group and the nitrous oxide group. Rosenstein et al. (2014) was the other more current study that was evaluated. This was a large study with 6,192 infants. They found no effect on the risk of admission to the NICU, academia, or lower apgar scores when nitrous oxide was used.

It should be recognized that in the majority of the studies, safety was not the primary study focus, but rather it was noted incidentally. This was true of safety matters concerning newborns as well. Fortunately, one of the largest studies in the matrix, the one by Onody et al. (2006) with a sample size of 35, 828 did specifically focus on safety and concurred with the rest of the studies that found nitrous oxide to be safe in a wide variety of clinical scenarios, though this still was not a randomized controlled study.

38

The safety of nitrous oxide when used in various special circumstances is of particular interest. Examples include situations in which either epidural or parenteral narcotics are contraindicated, or when nitrous oxide is of use because of a property it has. For example, nitrous oxide is well-suited to post-partum perineal repair because it is rapid-acting, eliminates the pain of infiltration of local analgesic, and does not result in further tissue edema and damage (Berlit et al., 2013). Nitrous oxide also has anxiolytic properties that are promising (Collins, 2015). In all these cases thus far, nitrous oxide has proven to be safe. Nitrous oxide has also been studied in some cases that epidural cannot be used, such as inherited bleeding disorders (Chi et al., 2009). A third category of special circumstances is the use of nitrous oxide in alternative settings and several authors corroborated its safety. Pita et al. (2012) reported there was no increased risk in low-income settings. Agah et al. (2014) found it was safe to use in all social classes.

Efficacy

The effectiveness of nitrous oxide is a more loosely defined term, subject to a greater variety of interpretations that varied from study to study. For example, in Talebi et al. (2009) efficacy was evaluated in terms of how nitrous oxide affected pain, while Waldenstrom & Irestedt (2006) evaluated how women remembered pain after the fact. As such there was also less consistency regarding whether nitrous oxide helped with pain. Pain, being a highly individualized and subjective measurement, is difficult to quantify, especially in small increments. There was a level I, grade A randomized controlled trial among the studies regarding efficacy. This was the study by Talebi et al. (2009). In a relatively large sample of 534 participants, they used a Visual Analogue Scale and demonstrated a statistically significant reduction in pain, as compared to the control. Pita et al. (2012) was another study that sought to

NITROUS OXIDE

evaluate the efficacy of nitrous oxide. Although this study was smaller, it is a very nice contribution to the literature, as they had good conclusive findings that showed a reduction in pain that was demonstrated using Visual Analogue Scales. Morgan et al. (1982) was included in the literature despite being one of the older studies. Again, these studies were included when they had relatively good design and findings that contributed to the body of knowledge. This study was a non-experimental design, though it consisted of 1,000 women. A linear analogue scale was used in this case to demonstrate a significantly lower average pain score when nitrous oxide was used, then when it was not.

Carstoniu et al. (1994) contradicted the findings of other studies. In a randomized, controlled trial they found no statistical difference between nitrous oxide and compressed air. The results of this study may be explained by the relatively short duration of time the controls and experimental gases were administered.

Overall the findings suggest that nitrous oxide may be effective in relieving labor pain, though efficacy can best be described as dependent on each individual's desires and expectations for pain management (Morgan et al., 1982).

Perhaps one of the most intriguing concepts in nitrous oxide is its anxiolytic properties and ability to affect pain from there. As previously mentioned at the beginning of the review, anxiety and inability to cope with pain lead to an increase in catecholamines, which feeds into a cycle of fatigue, dystocia, fetal distress and then back to increased pain (Rooks, 2012). Collins (2015) addressed the psychosocial features of labor and found nitrous oxide to influence this. It should be recognized that the study by Collins, though a grade A in quality, was a level V singlecase study and no other studies addressed this quality of nitrous oxide. This presents an excellent area for further research.

Implications for Midwifery Practice

Though the use and study of nitrous oxide here in the United States appears to just be entering a new phase of renewed interest, there is sufficient evidence available to influence current practice. There are no indications that nitrous oxide should be withheld as an option because of safety concerns. Nurse-midwives are in a key position to assess and evaluate current policies and practices that promote offering nitrous oxide as an additional option in management of pain associated with labor and delivery. Consistent with the ACNM's Hallmarks of Midwifery (ACNM, 2012), midwives are perfectly positioned to promote the use of nitrous oxide. The Hallmarks that the use of nitrous oxide embodies are advocacy of non-intervention in normal processes in the absence of complications; incorporation of scientific evidence into clinical practice: promotion of family- and women-centered care: empowerment of women as partners in health care; advocacy for informed choice, shared decision making, and the right to selfdetermination; and skilled communication, guidance, and counseling. Nitrous oxide is by far the least invasive of the medicinal options available to women, making it well suited to the midwifery model of care. Nitrous oxide does not require the presence of anesthesia, can be quickly administered, and is far cheaper than some other options. Evidence exists that nitrous oxide may be useful in scenarios that neuraxial options or IV options may not be appropriate as well such as postpartum perineal repair, or cephalic versions (Berlit et al., 2013 & Burgos et al., 2013). With their position as emerging and popular leaders in their field, nurse-midwives are well situated to promote the implementation and use of nitrous oxide in their place of practice and to help develop policy for its use.

Recommendations for Research

There is opportunity for further research in the areas of safety and efficacy of nitrous oxide in laboring women. Current literature has a significant variety in study design. Randomized controlled trials comparing nitrous oxide to a placebo are needed. Studies specific to safety would help to bolster the literature, including studies evaluating both the immediate, as well as long term effects on neonates specifically. Some additional scenarios warranting further study include the use of nitrous oxide in conjunction with other therapies such as water birth, or aromatherapy. It may be prudent to evaluate the safety of nitrous oxide in the presence of Category II or III fetal heart tones, hypertension, or preeclampsia for example, as well as to look at the safety of having nitrous oxide in the system when emergent general anesthesia becomes warranted due to sudden cord prolapse, or uterine rupture. Current studies tend to be broad, looking at multiple variables and a more defined focus is needed. There is plenty of evidence comparing the efficacy of nitrous oxide to epidurals and IV narcotic administration. It is evident that they are not comparable and further study is not likely to be beneficial. That said, comparison of nitrous oxide to alternative therapies such as massage, TENS, or aromatherapy could be useful.

Integration of King's Theory of Goal Attainment

King's Theory of Goal Attainment coincides directly with the model of care called for in nurse-midwifery. Both call for providing as many safe and effective options for women to choose from as possible in managing their pain. King's Theory says women set goals for themselves, including goals to safely and effectively manage their pain in labor. Nurse-midwives can help fulfill this goal by teaching their patients about nitrous oxide as an option and then later while in labor, how best use it for maximum safety and efficacy. Nitrous oxide is a PCA or selfadministered medication, which gives women the maximum amount of self-control in managing their pain and achieving their goal.

Conclusion

The major findings from this critical review emphasize the safety and efficacy of nitrous oxide for use in labor and delivery. The literature overwhelmingly supports the safety of nitrous oxide for both mothers and their newborns including in scenarios where traditional methods would otherwise be contraindicated. Offering nitrous oxide, which is safe, effective, and self-administered, is empowering to women in accordance with King's Theory of Goal Attainment. Nitrous oxide is cost effective and easy to use. Nurse-midwives are well positioned to promote the implementation of nitrous oxide, particularly in rural or other low-volume settings where its low cost and ability to be administered in the absence anesthesia staff may be of particular value. The body of knowledge can be further strengthened with the addition of good quality, randomized controlled trials with specific outcomes to be identified.

Appendix 1

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Agah, J.,	To compare	100 patients	Randomized	Labor	Length of	Continuous	Level I
Baghani, R.,	the	who delivered	Clinical Trial	progression,	second stage	method of	Grade B
Tali, S. S., &	complications	in Monini		fetal	of labor,	administration	
Tabarraei, Y.	induced by	Hospital in	50 women	condition, and	assisted birth,	is also safe	
(2014).	both	Iran in 2013.	inhaled	maternal O2	uterine atony,	and mothers	
Effects of	intermittent	Inclusion	Entonox	saturation as	and Apgars all	may be	
continuous	and	criteria were	during	well as	had no	allowed to	
use of	continuous	singleton	contractions	maternal and	statistically	make their	
Entonox in	administration	pregnancy,	and put it	newborn	significant	choice.	
comparison	of Entonox	cephalic	aside in	outcomes and	differences.	Further	
with		presentation,	between them	maternal	Perineal	investigation	
intermittent		and term	while 50	pushing	lacerations	is needed to	
method on		gestation.	women used	collaboration	were less	strengthen the	
obstetric		Exclusion	Entonox	were	frequent in the	findings.	
outcomes: A		criteria were	continuously.	recorded.	continuous		
randomized		macrosomia,			group and		
clinical trial.		maternal			maternal		
Journal Of		contracted			pushing		
Pregnancy, 1-		pelvis, repeat			collaboration		
5.		cesarean			and		
doi:10.1155/2		section,			satisfaction		
014/245907		nonreassuring			was also		
		FHR, SPO2			higher in the		
		less than 95%,			continuous		
		head injury,			group.		
		and severe					
		asthma.					

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Annequin, D.,	To assess the	1,019	Nitrous oxide	Self-	Median pain	Analgesia	Level III
Carbajal, R.,	use and safety	participants	was	assessment	evaluation	obtained	Grade B
Chauvin, P.,	of Nitrous	from 31	administered	was reported	was a 9 on a	during	
Gall, O.,	Oxide in the	centers across	to children	as well as	0-100 VAS	procedures is	
Tourniaire,	pediatric	France from	during painful	procedural	and 1 for both	good but not	
B., & Murat,	settings in	September 1 st	procedures.	pain	nurses and	efficacious in	
I. (2000).	France.	1996 through		evaluation by	parents on a	all patients.	
Fixed 50%		November 1 st ,		nurse and	0-10	Failures in	
nitrous oxide		1996. All	Surveys were	parents, team	numerical	pain relief	
oxygen		children 18	completed	satisfaction,	scale. 93% of	should be	
mixture for		years or less	following	and child	children said	detected early	
painful		who received	treatment by	agreement for	they would	and patient	
procedures: A		a nitrous	nurses,	future use of	accept Nitrous	should be	
French		oxide	patients, and	nitrous oxide.	Oxide again	switched to	
survey.		administration	family	Behavioral	for a similar	another	
Pediatrics,		for painful or	members.	reactions were	procedure.	analgesic	
105(4), e47-		invasive		noted in an	56.7% of staff	method.	
e47.		procedure		absent-present	rated their		
http://dx.doi.o		outside the		manner	satisfaction as		
<u>rg/10.1542/pe</u>		operating		including	very satisfied.		
<u>ds.105.4.e47</u>		theater were		crying, facial	All side		
		included in		reactivity,	effects were		
		the survey.		withdrawal,	minor and		
				restlessness,	transient. No		
				and additional	single serious		
				restraint	side effect		
				needed.	was noted		
					during the		
					study		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Berlit, S.,	To compare	100 women	Prospective	Data	Pain	Larger	Level I
Tuschy, B.,	the	with	Randomized	concerning	experienced	investigations	Grade B
Brade, J.,	effectiveness	childbirth	Controlled	anesthesia,	during	concerning	
Mayer, J.,	of self-	related	Trial	maternal	suturing and	the topic	
Kehl, S., &	administered	injuries at the		parameters,	patient's	should be	
Sütterlin, M.	50% nitrous	University	The study	duration of	satisfaction	performed as	
(2013).	oxide and	Medical	group	suturing,	were not	nitrous oxide	
Effectiveness	conventional	Centre	contained 48	neonatal head	statistically	self-	
of nitrous	infiltrative	Mannheim	women who	circumference	different	administration	
oxide for	anesthesia	between	self-	and weight,	between the	during	
postpartum	with 1%	November	administered	women's'	two groups.	postpartum	
perineal	prilocaine	2012 and	nitrous oxide	tolerance of	Nitrous oxide	genital tract	
repair: A	hydrochloride	February	5-10 minutes	the mask, side	allowed for	suturing	
randomised	in postpartum	2013.	prior to the	effects, and	the avoidance	seems to be a	
controlled	perineal	Exclusion	start of the	need for more	of infiltrative	satisfactory	
trial.	repair.	criteria	procedure.	anesthesia.	pain and	and effective	
European		included	The control		edema that	alternative to	
Journal Of		epidural	group		may impair	infiltrative	
Obstetrics &		analgesia,	received up to		the repair	anaesthesia	
Gynecology &		multiple	20mls of		process	for the	
Reproductive		pregnancies,	locally		caused which	majority of	
Biology,		fourth degree	infiltrated		could be	women	
170(2), 329-		perineal	prilocaine.		caused by the		
332.		laceration,			infiltration of		
doi:10.1016/j.		and age below			lidocaine.		
ejogrb.2013.0		18.					
6.025							

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Burgos, J.,	To analyze	300 women	Prospective	Thirty	The success	Further	Level II
Cobos, P.,	the effect of	with singleton	Comparative	minutes after	rate was	studies are	Grade A
Osuna, C., de	using inhaled	pregnancy in	Study	the procedure	52.3% in the	needed which	
Mar Centeno,	nitrous oxide	breech		the pain scale	Nitrous Oxide	eliminate the	
М.,	for analgesia	presentation	50: 50 mix of	was assessed	group and	bias in the use	
Fernández-	in external	at term	Nitrous Oxide	by a	52.7% in the	of consecutive	
Llebrez, L.,	cephalic	undergoing an	and oxygen	gynecologist	control group.	cohort groups	
Astorquiza, T.	version at	ECV.	was	who did not	The median	as opposed to	
M., &	term		administered	participate in	level of pain	a randomized	
Melchor, J. C.			using a face	the procedure.	was	trial. A study	
(2013).			mask for 3	Success rate	statistically	with a larger	
Nitrous oxide			minutes	of the	lower in	sample would	
for analgesia			before	procedure,	women given	also be	
in external			beginning the	pain, and	nitrous (6 vs.	helpful in	
cephalic			ECV and	obstetric and	7 in the	eliminating	
version at			continuous	perinatal	control	errors due to a	
term:			through the	outcomes	group). There	B error.	
Prospective			procedure for	were all	were no		
comparative			2-4 minutes.	assessed.	significant		
study. Journal			This was		differences in		
of Perinatal			administered		rate of		
Medicine,			to half of the		complications		
<i>41</i> (6), 719-			sample. The		or outcomes		
723.			other half		and there		
http://dx.doi.o			underwent		were no		
<u>rg/10.1515/jp</u>			ECV with no		severe		
<u>m-2013-0046</u>			analgesia.		complications		
					secondary to		
					Nitrous Oxide		
					inhalation		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Carstoniu, J.,	To test the	26 women	Randomized,	Subjects were	There were no	The study	Level I
Levytam, S.,	effects of	who were	double-blind,	trained in the	statistically	supports the	Grade B
Norman, P.,	nitrous oxide	admitted in	crossover,	use of a visual	significant	safety of the	
Daley, D.,	on the pain of	labor to the	placebo-	analog pain	differences in	use of	
Katz, J., &	labor	delivery suite	controlled	scale.	pain when	intermittent	
Sandler, A. N.	contractions	at a Toronto	study	Baseline	nitrous oxide	self-	
(1994).	and on	Hospital who		values were	as compared	administered	
Nitrous Oxide	maternal	had requested	The two	obtained. Pain	to compressed	nitrous oxide	
in early labor	SpO2 after	pain relief.	groups self-	scale and	air was	with regard to	
safety and	labor	Exclusion	administered	oxygen levels	administered.	maternal	
analgesic	contractions.	criteria	either 50%	were	SpO2 was	oxygenation.	
efficacy		included age	nitrous oxide	measured	significantly	More research	
assessed by a		<18 years;	or compressed	with each type	higher after	is necessary	
double-blind,		maternal	air for 5	of gas.	nitrous oxide	before a	
placebo-		cardiorespirat	contractions		administration	conclusive	
controlled		ory disease;	and then the			statement	
study.		any evidence	groups			about the	
Anesthesiolog		of fetal	swapped gas			efficacy of	
<i>y</i> , 80(1), 30–		distress or	they were			nitrous oxide	
35.		abnormal	using for the			in labor can	
doi:10.1097/0		heart rate	next set of 5			be made.	
0000542-		pattern; any	contractions.			Particular	
199401000-		condition				issues that	
00008		affecting the				need further	
		accuracy of				attention	
		pulse				include a	
		oximetry; or				multidimensio	
		the use of				nal pain	
		opioid or				assessment;	
		regional				the use of	

analgesia.	nitrous oxide	
	at the end of	
	the first stage	
	or during the	
	second stage	
	of labor;	
	administration	
	of nitrous	
	oxide in a	
	manner	
	ensuring that	
	the peak	
	analgesic	
	effect	
	coincides with	
	contractions;	
	and	
	continuous	
	nitrous oxide	
	administration	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Chi, C., Lee,	To review the	63 women	Retrospective	Clinical data	Entonox was	Each case	Level V
С. А.,	use of	with inherited	Review	was collected	used in 61%	must be	Grade B
England, A.,	obstetric	bleeding		including type	of the labors	assessed	
Hingorani, J.,	analgesia and	disorders who	Haemophilia	of bleeding	and no	individually	
Paintsil, J., &	anaesthesia in	had 80	and obstetric	disorder, labor	complications	depending on	
Kadir, R. A.	women with	pregnancies	case notes	and delivery	were noted.	the type of	
(2009).	inherited	between	were	data, method		bleeding	
Obstetric	bleeding	January 1	reviewed	of pain relief		disorder.	
analgesia and	disorders and	2000 and	retrospectivel	and any		However	
anaesthesia in	their	December 31	у.	complications		Entonox	
women with	associated	2005. Women		attributable to		appears to be	
inherited	complications	delivered at		the anesthesia.		a safe option	
bleeding		Royal Free				for analgesia	
disorders.		Hospital in				in women	
Thromb		London.				with bleeding	
Haemost,						disorders	
<i>101</i> (6), 1104-						unlike other	
1111.						methods	
http://dx.doi.o						which may be	
<u>rg/10.1160/th</u>						contraindicate	
08-10-0694						d.	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
	_	_	_		usion	ions	Quality
Collins, M.	To review the	A 30 year old	Case Study	A description	The woman in	The adverse	Level V
(2015). A	anxiolytic	G3P2002 in		of the	this case	effects of fear	Grade A
case report on	effects of	labor at 40.6		woman's	experienced	in labor are	
the anxiolytic	Nitrous	weeks in the		labor course	labor stalling	well	
properties of	Oxide.	United States.		before and	that might	documented	
nitrous oxide		History of 2		after the	have been	and inhalation	
during labor.		prior SVDs		nitrous oxide	associated	of nitrous	
Journal of		and		was provided	with her	oxide may	
Obstetric,		unremarkable		as well as a	unspoken and	have an	
Gynecologic,		pregnancy		statement	unresolved	anxiolytic	
& Neonatal		other than		from the	fear of giving	effect and	
Nursing,		estimated		woman	birth to a	reduces	
<i>44</i> (1), 87 - 92.		fetal weight		regarding her	child	catecholamine	
http://dx.doi.o		about 600		experience	anticipated to	s. Research	
<u>rg/10.1111/15</u>		grams larger		using the	be	addressing the	
<u>52-</u>		than her		nitrous oxide	significantly	psychosocial	
<u>6909.12522</u>		previously		and how she	larger than her	aspects of	
		largest child.		felt it affected	previous two.	nitrous oxide	
				her.	In this case,	in labor is	
					the anxiolytic	crucial.	
					effect of		
					nitrous oxide		
					was the most		
					helpful		
					property and		
					the woman's		
					stalled labor		
					quickly		
					resolved with		
					the used of		
					nitrous oxide.		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Dammer, U.,	To investigate	66 pregnant	Observational	The patient	A statistically	Inhaled	Level III
Weiss, C.,	the	women who		satisfaction	significant	nitrous oxide	Grade B
Raabe, E.,	acceptance of	received	The midwife	was	reduction of	is a safe and	
Heimrich, J.,	the inhaled	inhaled	completed a	documented	pain was	effective	
Koch, M. C.,	analgesia of	nitrous oxide	questionnaire	based on the	achieved with	method for	
Winkler, M.,	inhaled	and oxygen	after the birth.	patient's	nitrous oxide	pain relief	
& Kehl, S.	nitrous oxide	during labor		subjective	and oxygen.	during	
(2014).	and oxygen	on request and		statements on	The inhaled	delivery and	
Introduction	by midwives	after prior		tolerance, side	analgesia was	is accepted	
of inhaled	and pregnant	assessment of		effects, and	mostly used	well by both	
nitrous oxide	women during	suitability and		whether she	by women	women and	
and oxygen	labor	the midwives		would choose	who refused	their	
for pain		attending their		this method of	epidural	midwives. It	
management		births.		analgesia	analgesia. The	can also be	
during				again. Pain	likelihood of	used	
labour–				intensity	using it again	postpartum.	
evaluation of				before and	was rated		
patients' and				after receiving	higher for		
midwives'				nitrous was	patients who		
satisfaction.				assessed using	tolerated it		
Geburtshilfe				a numerical	well and used		
und				rating scale.	it in the		
Frauenheilku					second stage		
nde, 74(7),					of labor and		
656.					when bearing		
http://dx.doi.o					down.		
<u>rg/10.1055/s-</u>					Midwives		
<u>0034-1368606</u>					satisfaction		
					depended on		
					how it was		

		accepted by	
		the women.	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Duarte, R.,	To compare	4 female and	Nested	Speed and	All treatments	Further study	Level II
McNeill, A.,	the sedative,	4 male	within-	accuracy were	caused the	to quantify the	Grade C
Drummond,	cognitive, and	volunteers	subjects	measured	same degree	profiles of	
G., &	analgesic	aged 19-28	design with	using	of overall	drug actions	
Tiplady, B.	effects of	years and	four sessions	psychomotor	abnormal	on	
(2008).	nitrous oxide,	weighing	and	tests; von	feelings, but	performance	
Comparison	sevoflurane,	about the	treatments	Frey filaments	sevoflurane	and subjective	
of the	and ethanol to	same who	were given in	were used to	caused more	effects is	
sedative,	elucidate their	were healthy,	a double-blind	measure touch	obtunding and	important in	
cognitive, and	mechanisms	light to	and random	and pain	nitrous oxide	elucidating	
analgesic	of action and	moderate	sequence.	sensitivity;	was more	mode of	
effects of	allow	social		subjective	analgesic.	action,	
nitrous oxide,	therapeutic	drinkers and	Participants	mood,	Ethanol	measuring	
sevoflurane,	choices	were not	attended 4	reaction time	caused a	actions, and	
and ethanol.	between the	taking any	sessions, In	and memory	marked	predicting	
British	agents.	medications	each session	were also	feeling of	effects in	
Journal of		that might	they received	measured.	drunkenness,	clinical use.	
Anaesthesia,		have	one of the		but little		
100(2), 203-		interfered	following:		drowsiness or		
210.		with CNS	ethanol, a		analgesia. The		
http://dx.doi.o		function or	placebo,		effect of		
<u>rg/10.1093/bj</u>		drug	nitrous oxide,		nitrous oxide		
<u>a/aem369</u>		absorption or	and		affected the		
		elimination.	sevoflurane.		pan		
			Performance		significantly		
			and pain		greater than		
			threshold		for any other		
			testing were		treatment.		
			carried out				
			before				
			treatment and				

	twice during		
	the treatmen		
	period.		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Harrison, R.	To compare	170	Nonexperime	Collected data	99% of	The efficacy	Level III
F., Shore, M.,	analgesic	Primigravida	ntal	included pain	women who	of Epidurals	Grade B
Woods, T.,	effect, labor	women	Descriptive	thresholds	choose an	outweigh any	
Mathews, G.,	outcome,	attending	Comparative	using a	epidural	possible side	
Gardiner, J.,	safety, and	Rotunda		Monsanto	found it fully	effects and	
& Unwin, A.	consumer	Hospital in	The patients	gun,	effective.	Entonox	
(1987). A	satisfaction	Dublin from	were allowed	assessment of	Partial relief	appears suited	
comparative	between	June to	to choose	pain during	was reported	to those able	
study of	transcutaneou	December	which method	labor and	by 90% in the	to cope with	
transcutaneou	s electrical	1983. All	they wanted	assessment of	Entonox	the earlier part	
s electrical	nerve	were	to try with 50	pain relief,	group, 96% in	of labor drug	
nerve	stimulation,	primigravida	choosing	duration of	the TENS	free. Tens has	
stimulation	Entonox,	and selected	TENS, 20	labor, type of	group, and	potential but	
(TENS),	Pethidine +	at random.	Entonox, 20	delivery,	54% in the	development	
entonox,	Promazine		Pethidine +	infant weight	Pethidine +	of materials	
pethidine+	and lumbar		Promazine,	and Apgars,	Promazine	suited to the	
promazine	epidural.		and 50 lumbar	and post-	group. 82% of	quality of	
and lumbar			epidural. They	delivery	patients in the	labor pain is	
epidural for			were also not	comments	TENS group,	needed.	
pain relief in			restricted to	regarding	80% in the		
labor. Acta			the initial	choice of pain	Pethidine +		
Obstetricia et			method they	management.	Promazine		
Gynecologica			choose and		group, and		
Scandinavica,			were allowed		5% of patients		
<i>66</i> (1), 9-14.			to use an		in the		
http://dx.doi.o			additional		Entonox		
<u>rg/10.3109/00</u>			method as		group		
<u>01634870909</u>			needed.		required an		
<u>2945</u>					addition		
					method of		
					pain relief.		

		Women using	
		Entonox alone	
		had the	
		shortest labors	
		while women	
		using	
		epidurals had	
		the longest.	
		Operative	
		delivery was	
		much more	
		common in	
		the epidural	
		group. There	
		were no	
		differences	
		noted in cord	
		pH or Apgar	
		scores.	
		Midwives and	
		patients all	
		gave high	
		consumer	
		satisfaction	
		scores for all	
		methods	
		except	
		Pethidine +	
		Promazine.	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Henry, A., &	To explore the	496 women	Cross-	The survey	In comparing	Similar future	Level III
Nand, S. E.	use of, and	who delivered	sectional	contained 46	the usefulness	studies would	Grade B
(2004).	women's	at the Royal		items	of nitrous	be better to	
Intrapartum	satisfaction	Hospital for		separated into	oxide with	recruit from	
pain	with,	Women in		demographic	other pain	multiple	
management	intrapartum	Sydney	Women who	information,	management	hospitals to	
at the Royal	pain	Australia	underwent	intrapartum	options,	increase	
Hospital for	management	between	labor were	pain	nitrous had	generalizable	
Women.	at Royal	October 2002	handed a	management	very similar	data.	
Australian &	Hospital for	to January	survey in the	use and	ratings		
New Zealand	Women in	2003. Women	first 24 hours	women's	regarding is		
Journal Of	Sydney	were excluded	post-partum	satisfaction	usefulness as		
Obstetrics &	Australia.	if they were	to be	with use, and	compared to		
Gynaecology,		less than age	complete by	knowledge	natural		
44(4), 307-		17, non-	the end of the	and attitudes	methods		
313.		English	first post-	towards	which		
doi:10.1111/j.		speaking,	partum week.	intrapartum	included		
1479-		undergoing	Additional	pain	massage, hot		
828X.2004.00		Cesarean	data was	management.	pack,		
231.x		section where	collected from	Additional	bath/shower,		
		no labor	women's	data collected	or any other		
		occurred, had	charts if they	from the chart	"nominated		
		any major	completed the	included	non-		
		neonatal	survey.	information	pharmacologi		
		morbidity,		about	cal method",		
		homebirths,		antenatal care,	although a		
		and those with		place of	slightly larger		
		active		delivery, and	number of		
		psychiatric		information	women		
		illness at the		on use of pain	reported they		
		time of labor.		management	found nitrous		

		and timing	to be not at all	
		······	helpful as	
			compared to	
			natural	
			methods.	
			Natural	
			methods	
			would	
			'definitely' or	
			'probably' be	
			used again by	
			79% of	
			women	
			compared to	
			65% who said	
			they would	
			use the nitrous	
			oxide again.	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Jones, P. L.,	To compare	50 patients	Randomized	The	Objective	Further study	Level I
Rosen, M.,	the efficacy	with 25 in	Controlled	anesthetist	assessment by	is needed to	Grade B
Mushin, W.	and side	each group.	Trial	measured the	the	evaluate the	
W., & Jones,	effects of			responses of	anesthetists	efficacy of	
E. V. (1969).	Methoxyflura	The sample		the mother to	showed the	nitrous oxide	
Methoxyflura	ne and	consisted of	Detionts wore	each	methoxyflura		
ne and nitrous	Nitrous	healthy,	ratients were	contraction, of	ne is the more		
oxide as	Oxide.	uncomplicate	randomized	the degree of	effective		
obstetric		d labors and	into one of the	restlessness	analgesic.		
analgesics.		vaginal	two groups.	between	Nausea and		
II.—A		deliveries.	During the	contractions	vomiting were		
comparison			first stage of	according to a	significantly		
by self-			labor, mothers	defined scale.	less with the		
administered			were	At the end of	methoxyflura		
intermittent			instructed to	labor the	ne.		
inhalation.			breath from	opinions of			
<i>BMJ</i> , <i>3</i> (5665),			the mask	the midwife			
259-262.			during each	and the			
http://dx.doi.o			contraction	mother were			
<u>rg/10.1136/b</u>			and during the	sought The			
<u>mj.3.5665.259</u>			and during the	opinion of the			
			second they	mother was			
			were	also sought at			
			instructed to	36 to 48 hours			
			take few	after delivery.			
			breaths before	Pain relief,			
			bearing down.	blood loss,			
				side effects,			
				memory of			
				the labor and			
				delivery,			

		smell of the		
		nitrous oxide,		
		dreams, and		
		any other		
		sensations		
		were		
		recorded.		
		Apgars of the		
		newborn were		
		also recorded.		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Khadem, N.,	To compare	84 nulliparous	Randomized	Pain was rated	Pain score	Epidural is	Level I
Zirak, N.,	the efficacy of	women	Controlled	using a scale	was lower in	recommended	Grade B
Soltani, G.,	epidural	admitted to	Trial	of 0 to 10.	all stages with	for painless	
Sahebdelfar,	versus	Imam Reza			epidural than	delivery but	
N., Sepehri	Entonox	Hospital	Women were		with Entonox.	Entonox is	
Shamloo, A.,	methods for		randomly		There was no	safe and may	
&	labor		divided into		statistical	be considered	
Ebrahimzadeh	analgesia in		two groups.		difference	when regional	
, S. (2013).	nulliparous		42 women		between	analgesia is	
Comparison	women		used Entonox		length of	not	
of epidural			in the active		labor,	performed.	
versus			phase of labor		cesarean rate,		
entonox for			at the		and Apgar		
labor			beginning of		scores.		
analgesia in			each				
nulliparous			contraction				
<i>نشریه</i> .women			and 42				
جراحہ و تروما,			women				
5-1 ,(1)1.			received an				
Retrieved			epidural.				
form							
http://www.ijs							
.ir/							

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Lindholm, A.,	To describe	Pregnant	Prospective	The first	Nitrous oxide	Caregivers	Level III
&	what pain	Swedish-	Longitudinal	questionnaire	was the most	need to	Grade B
Hildingsson,	relief methods	speaking		was used to	preferred and	discuss with	
I. (2015).	pregnant	women were	Three	collect basic	used pain	pregnant	
Women's	women	recruited at	questionnaires	demographic	relief method.	women about	
preferences	preferred	the routine	were used.	data. The		their pain	
and received	when asked in	ultrasound	The first was	second	Women who	relief	
pain relief in	late	visit in	completed	addressed	gave birth	preferences	
childbirth-A	pregnancy	gestational	after the first	women's	vaginally used	for labor and	
prospective	and to identify	week 17-18 at	visit after	preferences	nitrous oxide	birth but also	
longitudinal	factors	three hospitals	agreeing to	for pain relief	more often	about pros	
study in a	associated	in the	participate in	and fear of	than women	and cons with	
northern	with preferred	northern	the study, the	birth using a 4	with	the available	
region of	and received	region of	second was	point Likert	spontaneous	methods as	
Sweden.	pain relief	Sweden. 1506	sent to	scale. The	onset labor	certain	
Sexual &	methods.	women	women's	third	who ended	methods such	
Reproductive		consented to	homes at 32-	questionnaire	with an	as epidural is	
Healthcare,		participate.	34 weeks, and	assessed	emergency	associated	
<i>6</i> (2), 74-81.		1,212	the third was	methods	cesarean	with a less	
http://dx.doi.o		completed the	sent to their	actually used,	section.	positive birth	
<u>rg/10.1016/j.s</u>		first survey,	homes at 2	information		experience.	
<u>rhc.2014.10.0</u>		1,042	months after	about the	The 38% of		
<u>01</u>		completed the	birth.	birth, and a	women who		
		second, and		question	rated their		
		936		about birth	birth as "less		
		completed the		experience	positive" were		
		third survey.		being either	strongly more		
				positive or	likely to have		
				negative	had an		
				which was	epidural		

		also measured		
		using a 5		
		point Likert		
		scale.		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Mcguinnes,	To compare	20 women in	Random,	When uterine	When	Self-	Level II
C., & Rosen,	the efficacy of	labor who	Quasi-	linear	Entonox was	administered	Grade B
M. (1984).	enflurane 1%	were in early	experimental	analogue	used, median	inhalational	
Enflurane as	in air with	normal labour	crossover	scores for	pain scores	analgesics are	
an analgesic	Entonox.			pain were	were reduced	safe because	
in labour.			When uterine	completed	from 61/100	excess	
Anaesthesia,			contractions	before and	when nothing	drowsiness is	
<i>39</i> (1), 24-26.			became	after each	was used to	self-limiting.	
http://dx.doi.o			regular, each	agent.	52/100.	Further	
<u>rg/10.1097/00</u>			woman was	Drowsiness	Drowsiness	studies are	
<u>132582-</u>			randomly	and nausea	occurred	needed to	
<u>198412000-</u>			given one of	were also	significantly	evaluate the	
<u>00028</u>			the analgesic	assessed by	less with	effectiveness	
			agents	linear	Entonox than	of different	
			(Entonox or	analogue	with enflurane	concentrations	
			enflurane 1%)	scores.	1%. No	and to look	
			for three		untoward	for evidence	
			consecutive		effects were	of changes in	
			contractions,		recorded with	the progress	
			then given the		either agent.	of labor or the	
			other agent			neurobehavior	
			for three			al pattern of	
			contractions.			the newborn.	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Morgan, B.,	To compare	1,000 women	Cross-	Patients were	Women who	The	Level III
Bulpitt, C.,	the relative	who delivered	sectional	asked to rate	had an	relationship	Grade B
Clifton, P., &	effectiveness	at Queen	interview	pain from 0-	epidural had	between	
Lewis, P.	of different	Charlotte's		100 on a 10	the lowest	maternal	
(1982).	methods of	Hospital in		cm linear	mean pain	attitudes to	
Effectiveness	obstetric	London over a		analogue	score (29 +/-	pain in labor	
of pain relief	analgesia in a	period of four		scale.	3.7) followed	and its	
in labour:	consecutive	months.			by meperidine	relation to a	
survey of	series of				plus epidural	satisfactory	
1,000	1,000 women				(30 +/- 3.8),	experience	
mothers.					epidural plus	appear to be	
British					entonox (57	important and	
Medical					+/- 3.4),	need to be	
Journal					meperidine	studied	
(Clinical					(58 +/- 3.1),	further. Pt's	
Research					entonox (61	should be	
Edition),					+/- 3.1),	counselled	
285(6343),					pudendal	that modern	
689-690.					block (68 +/-	methods can	
http://dx.doi.o					1.9),	relieve,	
<u>rg/10.1136/b</u>					miscellaneous	although not	
<u>mj.285.6343.6</u>					(69 +/- 3.3),	totally abolish	
<u>89</u>					and no	pain in labor	
					analgesia (70	and the	
					+/- 2.6).	promise of a	
						totally	
						painless labor	
						is unrealistic	
						and not	
						warranted.	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Onody, P.,	To analyze	35,828 data	4 year	Type of	A total of	The survey	Level III
Gil, P., &	the factors	sheets from	Prospective	adverse event	1,581 (4.4%)	confirms the	Grade A
Hennequin,	that affect	191 French	Survey	was	adverse	pharmacologi	
M. (2006).	tolerance of	hospital		described.	events were	cal safety of	
Safety of	the 50%	Pediatric and	License of use	Patient	reported	50% Nitrous	
inhalation of a	Nitrous	Adult units.	for the	demographics	which were	Oxide in a	
50% nitrous	Oxide/Oxyge		product	, description	mostly	wide variety	
oxide/oxygen	n		required the	of the premix	gastrointestina	of clinical	
premix. Drug	administration		completion of	including	l and	indications.	
Safety, 29(7),	in wide range		a data sheet	brand, route,	neuropsychiat	There's a	
633-640.	of clinical		after each	starting date	ric disorders.	need for	
http://dx.doi.o	indications.		administration	and time,	The main	rational	
<u>rg/10.2165/00</u>			. Data sheets	indications for	factors	training of	
002018-			were supplied	use,	associated	medical	
<u>200629070-</u>			with the gas	description	with adverse	personnel in	
00008			cylinders and	off any	events were	its	
			had to be	concomitant	age 11-18,	administration	
			completed for	drugs and full	concomitant		
			each	details of each	drug		
			administration	adverse event	administration		
			regardless of	including	and longer		
			the	body site and	duration of		
			occurrence or	severity,	inhalation.		
			not of an	duration,	There were 27		
			adverse event.	correlation of	reported		
				disappearance	serious		
				and	adverse		
				recurrence of	events, though		
				the reaction	only 9 of		
				with stopping	them could		
				and	possibly be		

		reintroducing	attributed to	
		the drug,	the Nitrous	
		recovery and	oxide.	
		sequelae	Concomitant	
		conditions.	drug	
			association	
			and	
			insufficient	
			patient	
			surveillance	
			were	
			attributed to	
			14 of the	
			serious	
			adverse	
			events.	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Pasha, H.,	To assess	98 pregnant	Randomized	А	Most of the	Planning and	Level I
Basirat, Z.,	maternal	women with	Clinical Trial	questionnaire	women	establishment	Grade B
Hajahmadi,	expectations	gestational		was used to	receiving the	of a	
M., Bakhtiari,	and	age 37-42	Mothers	gather	gas had less	consultation	
A., Faramarzi,	experience of	weeks,	inhaled the	information	pain and were	system to	
M., &	labor	uncomplicate	gas at the	about severity	satisfied with	provide	
Salmalian, H.	analgesia with	d pregnancies,	beginning of	of pain,	it. In the	information	
(2012).	nitrous oxide.	and pregnant	the pain and	efficacy,	Entonox	about various	
Maternal		with at least	stopped when	expectations,	group,	methods of	
expectations		their second	the pain of	experiences,	40.82% had	labor	
and		child in active	each	and	severe pain	analgesia,	
experiences of		phase of labor	contraction	satisfaction	and 10.2%	especially gas	
labor		in the	ended and	using the gas	had very	is necessary to	
analgesia with		maternity	continued	and also any	severe pain	increase the	
nitrous oxide.		ward in	until the 2 nd	related	while in the	tendency of	
Iranian Red		Shahid	stage of labor.	complications	control group,	pregnant	
Crescent		Yahyanejiad	One group		55.1% had	women to	
Medical		Hospital in	received gas		severe pain	undergo	
Journal,		Babol from	and the other		and 25.6%	natural	
14(12), 792.		2008-2009.	did not.		had very	delivery	
http://dx.doi.o					severe pain.	without	
rg/10.5812/irc					63% of the	bearing severe	
<u>mj.3470</u>					side effects	labor pains.	
					were rated as		
					mild.		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Pita, C.,	To present	126 women	Prospective	Pain	One hour after	Inhaled	Level II
Pazmiño, S.,	current	with singleton	observational	perception	initiating	intrapartum	Grade B
Vallejo, M.,	information	pregnancies	pilot study	was measured	procedure,	analgesia	
Salazar-	about the	35 weeks or		using a 10	pain	using 50-50%	
Pousada, D.,	safety and	more, in	Women were	point Visual	decreased by	nitrous-	
Hidalgo, L.,	risks of the	active phase	asked to	Analog Scale.	56.2% while	oxygen	
Pérez-López,	use of nitrous	of labor,	inhale 50-	Scores were	cervical	provided	
F., &	oxide for both	cephalic	50% nitrous	measured at	dilation and	rapid pain	
Chedraui, P.	anesthesia and	presentation	oxide-oxygen	baseline, 1	effacement	alleviation. It	
(2012).	the low-dose	who delivered	during	hour after	increased by	is an	
Inhaled	nitrous	between July	contractions	initiation, and	28.4% and	appealing,	
intrapartum	oxide/oxygen	2011 and June	and room air	during	21.7%.	effective and	
analgesia	combination	2011 at	between	episiotomy	Vaginal	safe method	
using a 50-50	that is used	Enrique C.	contractions.	repair.	delivery was	for	
% mixture of	for analgesia,	Sotomayor		Progression	achieved in	management	
nitrous oxide-	with emphasis	Obstetrics and		and duration	96.9% of	of pain during	
oxygen in a	on concerns	Gynecology		of labor,	cases. The	labor. Nitrous	
low-income	that are	Hospital in		maternal vital	main adverse	oxide is most	
hospital	related to	Guayaquil,		signs, and	effect was	useful at	
setting.	effects on	Ecuador		fetal well-	dizziness	institutions	
Archives Of	labor, birth,			being was	(43.7%) and	with	
Gynecology &	breastfeeding,			also assessed	was rated as	infrastructure	
Obstetrics,	the well-being			hourly. Route	mild and	and personnel	
286(3), 627-	of the mother			of delivery,	tolerable. 96%	limitations.	
631.	and neonate,			mixture	answered that		
doi:10.1007/s	and possible			consumption,	they would		
00404-012-	occupational			adverse	recommend		
2359-6	risks for			effects, degree	the method		
	individuals			of	and 92.9%		
	who care for			satisfaction,	graded it as		
	women during			and	good/excellen		

labor		maternal/neon	t				
		atal outcome					
		data were also					
		recorded.					
Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
-----------------	---------------	----------------	-----------------	---------------	-----------------	-----------------	-----------
					usion	ions	Quality
Rosenstein,	To describe	The sample	Cohort Study	Neonatal	Nitrous oxide	Nitrous oxide	Level III
M., Flood, P.,	the neonatal	included		admission	users were	is a labor	Grade B
Thiet, M. P.,	and maternal	6,192 laboring		was the	more likely to	analgesic that	
Nakagawa, S.,	outcomes	women from a	Data was	primary	be nulliparous	is safe for the	
Bishop, J., &	associated	single US	collected from	outcome.	and less likely	neonate and 1s	
Cheng, Y.	with the use	hospital	the medical	Secondary	to receive	not associated	
(2014). 598:	of Nitrous	between	records of	maternal and	oxytocin,	with adverse	
The use of	Oxide at a US	2007-2012.	women	neonatal	deliver via C-	maternal	
nitrous oxide	hospital	14% of them	enrolled in the	outcomes	section, or	outcomes.	
analgesia		used nitrous	study after	were also	develop		
during labor		oxide and of	they had	collected and	chorioamnioni		
at a single		those 42%	given birth	compared	tis. There was		
the United		also used an		against	difference in		
States		epidulai.		nonusers.	the odds of		
States.					NICLI		
Inurnal of					admission		
Obstetrics					acidemia 5		
and					minute Angar		
Gvnecology					score less than		
1(210) S294-					7 or		
S295.					postpartum		
http://dx.doi.o					hemorrhage.		
rg/10.1016/j.a							
jog.2013.10.6							
<u>31</u>							

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Stefani, S. J.,	To assess the	61 healthy full	Randomized	Two	All groups	The results	Level I
Hughes, S. C.,	possible	term	Controlled	examiners	were	confirm the	Grade B
Schnider, S.	Neurobehavio	parturients	Trial	who were	essentially	safety and	
M., Levinson,	ral effects of	and their		unaware of	similar with	effectiveness	
G., Abboud,	Nitrous Oxide	newborns.	Parturients	the nature and	respect to	of inhalation	
Т. К.,	or Enflurane		were divided	duration of	method of	analgesia for	
Henriksen, E.	on the		into 3 groups.	analgesia	delivery,	vaginal	
Н., &	neonate.		Group 1 had	evaluated the	administration	delivery and	
Johnson, J.			21 patients	neonates at 15	of narcotics,	demonstrate	
(1982).			and received	minutes, 2	and use of	the absence of	
Neonatal			no inhalation	hours, and 24	local	adverse	
neurobehavior			analgesia.	hours using	anesthetics,	neonatal	
al effects of			Group 2 had	the NACS	duration and	neurobehavior	
inhalation			22 patients	(Neurologic	effectiveness	al effects up	
analgesia for			and had	and Adaptive	of analgesia, 5	to 24 hours	
vaginal			received .3-	Capacity	minute Apgar	after birth.	
delivery.			.8% enflurane	Score)and	scores, and	Nitrous oxide	
Anesthesiolog			and Group 3	ENNS (Early	acid-base	is a good	
<i>y</i> , <i>56</i> (5), 351-			had 18	Neonatal	status. There	option for	
355.			patients and	Behavioral	was no	women in	
http://dx.doi.o			had received	Score).	difference in	labor.	
rg/10.1097/00			30-50%		any item on		
132582-			Nitrous Oxide		either the		
198212000-					NACS or		
00020					ENNS.		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Talebi, H.,	To investigate	534 ASA I	Randomized	Pain was rated	During the	Data indicates	Level I
Nourozi, A.,	the	and II	Placebo	with a VAS.	first three	that using	Grade A
Jamilian, M.,	effectiveness	parturients	Controlled	O2 saturation,	measurements	50% Nitrous	
Baharfar, N.,	of nitrous	between	Trial	FHR, Mean	, the SaO2	Oxide	
& Eghtesadi-	oxide on pain	September		Arterial Blood	was	provides	
Araghi, P.	of labor	2004 to 2006.	Patients were	Pressure,	significantly	significant	
(2009).	contractions	Ages were	randomized to	Apgar scores,	higher in the	pain relief and	
Entonox for	and maternal	from 16 to 35	receive either	and side	control group,	is associated	
labor pain: a	SaO2.	years of age,	a pre-prepared	effects were	yet there was	with few side	
randomized		pregnant with	mixture of	recorded.	no difference	effects. It can	
placebo		first or second	50% nitrous		among groups	be quickly	
controlled		child and in	oxide and		in the next	implemented	
trial. Pakistan		active phase	oxygen or		measurements	during	
Journal of		of labor.	50% oxygen.		. The MAP	advanced	
Biological		Patients with	The utilized		was	painful labor.	
Sciences:		fetal distress,	intermittent		comparable	The study had	
<i>PJBS</i> , <i>12</i> (17),		any maternal	self-		except the	limitations	
1217-1221.		cardiorespirat	administration		first two	including the	
http://dx.doi.o		ory condition,			measurements	difficulty in	
<u>rg/10.3923/pj</u>		or history of			in which the	timing	
<u>bs.2009.1217.</u>		taking opioids			control group	appropriately	
<u>1221</u>		were excluded			was higher.	the	
		as well as			Pain scores	administration	
		patients who			were	of nitrous	
		did not			significantly	oxide and it	
		tolerate			lower in the	widely	
		Entonox.			Nitrous Oxide	fluctuating	
					group	bloodstream	
					throughout	levels and	
					the study.	also the	
					There were no	failure to	

		significant	evaluate	
		differences	evaluate notiont's	
		differences in	patient s	
		1st and 5th	assessments	
		minute Apgar	of pain relief	
		scores. Side	during	
		effects were	delivery and	
		significantly	36-48 hours	
		higher among	later.	
		patients in the		
		Nitrous Oxide		
		group.		
		Dizziness		
		occurred in		
		22.6% of the		
		Nitrous group		
		and		
		Drowsiness		
		occurred in		
		15.4%		
		compared to		
		0% in the		
		control group.		

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Waldenström,	To increase	1,230 women	Cross	The first	Of women	Pharmacologi	Level III
U. (1999).	our	of low	Sectional	questionnaire	who had	cal pain relief	Grade B
Experience of	understanding	medical risk		included	nitrous oxide,	reduces pain,	
labor and	of women's	who were	Data was	demographic	57% reported	but its effect	
birth in 1,111	birth	recruited from	collected by a	information as	positive or	on the overall	
women.	experience.	the greater	questionnaire	well as	very positive	birth	
Journal Of		Stockholm	in early	information	birth	experience is	
Psychosomati		area in early	pregnancy	about anxiety	experience	in question	
c Research,		pregnancy.	and a follow-	via the	compared	and is an	
47(5), 471-		They were	up	Karolinska	with 49% of	important	
482.		allocated to	questionnaire	Scales of	women who	field for	
doi:10.1016/S		care in an in-	two months	Personality	had	further	
0022-		hospital birth	after delivery.	and about	meperidine	research.	
3999(99)0004		center or		expectations	and 34% of		
3-4		standard care.		going into	women who		
		1,148 women		birth	had epidural		
		returned the			analgesia.		
		follow-up		The second	Overall, the		
		questionnaire		questionnaire	use of nitrous		
		and the final		included	oxide was		
		sample was		details about	associated		
		1,111 after		the birth, and	with a less		
		women were		assessed	positive birth		
		excluded for		women's	experience		
		fetal loss and		feelings about	compared to		
		for cesarean		their birth as	the use of no		
		section with		rated on a 1-7	medications.		
		no labor.		scale as far if	This is		
				their	hypothesized		
				experience	to be		
				was negative	correlated to		

		or positive.	personality	
			traits, which	
			affect	
			women's	
			inclination to	
			nitrous oxide	
			as well as	
			their	
			satisfaction	
			with birth.	

Citation	Purpose	Sample	Design	Measurement	Results/Concl	Recommendat	Level and
					usion	ions	Quality
Waldenström,	To investigate	A national	Longitudinal	Socio-	Nitrous oxide	Further study	Level II
U., & Irestedt,	the	sample of	Cohort Study	demographic	was the most	is needed to	Grade B
L. (2006).	association	2,482		information,	commonly	try to explain	
Obstetric pain	between use	Swedish	Three postal	level of worry	used method	the amnesic	
relief and its	of pain relief	women with	questionnaires	about the	of pain relief.	effect seen	
association	during labor,	vaginal	were used.	approaching	37.6% rated it	with nitrous	
with	and	delivery or	One in early	birth, and	as very	oxide and to	
remembrance	specifically	emergency	pregnancy	expectations	effective	have more	
of labor pain	epidural	cesarean	and one two	of labor pain;	compared to	consistent	
at two months	analgesia, and	section	months after	intensity of	83.7%	conditions	
and one year	long-term	preceded by	birth and one	pain actually	epidural and	throughout	
after birth.	memory of	labor were	year after	experienced,	41.4% that	the study.	
Journal of	labor pain.	followed from	birth.	delivery data	used		
Psychosomati		early			Pethidine.		
c Obstetrics &		pregnancy to			High rates of		
Gynecology,		one year after			nitrous oxide		
27(3), 147-		birth.			use was		
156.					associated		
http://dx.doi.o					with		
<u>rg/10.1080/01</u>					remembering		
<u>67482050043</u>					less pain.		
<u>3432</u>							

References

- Adams, S., Eberhard-Gran, M., & Eskild, A. (2012). Fear of childbirth and duration of labour: A study of 2,206 women with intended vaginal delivery. *BJOG: An International Journal of Obstetrics & Gynaecology*, *119*(10), 1238-1246. doi:10.1111/j.1471-0528.2012.03433.x
- Agah, J., Baghani, R., Tali, S. S., & Tabarraei, Y. (2014). Effects of continuous use of Entonox in comparison with intermittent method on obstetric outcomes: A randomized clinical trial. *Journal of Pregnancy*, 1-5. doi:10.1155/2014/245907
- AHRQ (2011). Evidence-based practice center systematic review protocol. Project title: Nitrous oxide for the management of labor pain. Retrieved from http://effectivehealthcare.ahrq.gov/index.cfm/search-for-guides-reviews-and-reports/?productid=675&pageaction=displayproduct
- Akerman, N & Dresner, M. (2009). The management of breakthrough pain during labour. *CNS Drugs*, 23(8), 66-679, doi: 10.21265/00023210-200923080-00004
- Anderson, D. (2011). A review of systemic opioids commonly used for labor pain relief. *Journal* of Midwifery & Women's Health, 56(3), 222-239. doi:10.1111/j.1542-2011.2011.00061.x
- Andersen, L. B., Melvaer, L. B., Videbech, P., Lamont, R. F., & Joergensen, J. S. (2012). Risk factors for developing post-traumatic stress disorder following childbirth: a systematic review. *Acta Obstetricia Et Gynecologica Scandinavica*, *91*(11), 1261-1272. doi:10.1111/j.1600-0412.2012.01476.x

- Annequin, D., Carbajal, R., Chauvin, P., Gall, O., Tourniaire, B., & Murat, I. (2000). Fixed 50% nitrous oxide oxygen mixture for painful procedures: A French survey. *Pediatrics*, 105(4), e47-e47. <u>http://dx.doi.org/10.1542/peds.105.4.e47</u>
- American College of Nurse-Midwives. (2010). From the American College of Nurse-Midwives: Nitrous oxide for labor analgesia. *Journal of Midwifery & Women's Health*, 55(3), 292–296
- American College of Nurse-Midwives. (2012). *Core competencies for basic midwifery practice*. Retrieved from http://www.midwife.org/index.asp?bid=59&cat=2&button=Search&rec=50
- Berlit, S., Tuschy, B., Brade, J., Mayer, J., Kehl, S., & Sütterlin, M. (2013). Effectiveness of nitrous oxide for postpartum perineal repair: A randomised controlled trial. *European Journal of Obstetrics & Gynecology & Reproductive Biology*, 170(2), 329-332. doi:10.1016/j.ejogrb.2013.06.025
- Bistoletti, P., Lagercrantz, H., & Lunell, N. O. (1980). Correlation of fetal heart rate patterns with umbilical artery pH and catecholamines during last hour of labor. *Acta Obstetricia et Gynecologica Scandinavica*, *59*(3), 213-216.

http://dx.doi.org/10.3109/00016348009155398

Burgos, J., Cobos, P., Osuna, C., de Mar Centeno, M., Fernández-Llebrez, L., Astorquiza, T. M., & Melchor, J. C. (2013). Nitrous oxide for analgesia in external cephalic version at term:
Prospective comparative study. *Journal of Perinatal Medicine*, *41*(6), 719-723.
http://dx.doi.org/10.1515/jpm-2013-0046

- Carstoniu, J., Levytam, S., Norman, P., Daley, D., Katz, J., & Sandler, A. N. (1994). Nitrous Oxide in early labor safety and analgesic efficacy assessed by a double-blind, placebocontrolled study. *Anesthesiology*, 80(1), 30–35. doi:10.1097/00000542-199401000-00008
- Chi, C., Lee, C. A., England, A., Hingorani, J., Paintsil, J., & Kadir, R. A. (2009). Obstetric analgesia and anaesthesia in women with inherited bleeding disorders. *Thromb Haemost*, 101(6), 1104-1111. <u>http://dx.doi.org/10.1160/th08-10-0694</u>
- Collins, M. (2015). A case report on the anxiolytic properties of nitrous oxide during labor.
 Journal of Obstetric, Gynecologic, & Neonatal Nursing: Clinical Scholarship for the
 Care of Women, Childbearing Families, & Newborns, 44(1), 87-92. doi:10.1111/15526909.12522
- Dammer, U., Weiss, C., Raabe, E., Heimrich, J., Koch, M. C., Winkler, M., ... & Kehl, S. (2014).
 Introduction of inhaled nitrous oxide and oxygen for pain management during labour– evaluation of patients' and midwives' satisfaction. *Geburtshilfe und Frauenheilkunde*, 74(7), 656. <u>http://dx.doi.org/10.1055/s-0034-1368606</u>
- Dearholt, S. L. & Dang, D. (2012). Johns Hopkins nursing evidence-based practice model and guidelines. Indianapolis, IN: Sigma Theta Tau International.
- Duarte, R., McNeill, A., Drummond, G., & Tiplady, B. (2008). Comparison of the sedative, cognitive, and analgesic effects of nitrous oxide, sevoflurane, and ethanol. *British Journal of Anaesthesia*, 100(2), 203-210. <u>http://dx.doi.org/10.1093/bja/aem369</u>
- Grass, J. A. (2005). Patient-controlled analgesia. *Anesthesia & Analgesia*, *101*(5S), S44-S61. http://dx.doi.org/10.1213/01.ane.0000177102.11682.20

- Harrison, R. F., Shore, M., Woods, T., Mathews, G., Gardiner, J., & Unwin, A. (1987). A comparative study of transcutaneous electrical nerve stimulation (TENS), entonox, pethidine+ promazine and lumbar epidural for pain relief in labor. *Acta Obstetricia et Gynecologica Scandinavica*, 66(1), 9-14. <u>http://dx.doi.org/10.3109/00016348709092945</u>
- Halpern, S. H., Levine, T., Wilson, D. B., MacDonell, J., Katsiris, S. E., & Leighton, B. L. (1999). Effect of labor analgesia on breastfeeding success. *Birth*, *26*(2), 83-88.
 http://dx.doi.org/10.1046/j.1523-536x.1999.00083.x
- Henry, A., & Nand, S. E. (2004). Intrapartum pain management at the Royal Hospital for
 Women. Australian & New Zealand Journal of Obstetrics & Gynaecology, 44(4), 307313. doi:10.1111/j.1479-828X.2004.00231.x
- Jones, P. L., Rosen, M., Mushin, W. W., & Jones, E. V. (1969). Methoxyflurane and nitrous oxide as obstetric analgesics. II.—A comparison by self-administered intermittent inhalation. *BMJ*, 3(5665), 259-262. <u>http://dx.doi.org/10.1136/bmj.3.5665.259</u>
- Khadem, N., Zirak, N., Soltani, G., Sahebdelfar, N., Sepehri Shamloo, A., & Ebrahimzadeh, S. (2013). Comparison of epidural versus entonox for labor analgesia in nulliparous women. 5-1 ,(1)1 . نشریه جراحی و تروما, 1(1). Retrieved form <u>http://www.ijs.ir/</u>
- King, T., Brucker, M., & Fahey, J. (2013). *Varney's nurse midwifery*. Sudbury, MA: Jones and Bartlett Publishing.
- Ko, J. Y., & Leffert, L. R. (2009). Clinical implications of neuraxial anesthesia in the parturient with scoliosis. *Anesthesia & Analgesia*, *109*(6), 1930-1934.
 http://dx.doi.org/10.1213/ane.0b013e3181bc3584

- Kuczkowski, K. M. (2007). Labor analgesia for pregnant women with spina bifida: What does an obstetrician need to know?. Archives of Gynecology and Obstetrics, 275(1), 53-56. <u>http://dx.doi.org/10.1007/s00404-006-0147-x</u>
- Lederman, R. P., Lederman, E., & McCann, D. S. (1985). Anxiety and epinephrine in multiparous women in labor: relationship to duration of labor and fetal heart rate pattern. *American Journal of Obstetrics and Gynecology*, *153*(8), 870-877. http://dx.doi.org/10.1016/0002-9378(85)90692-1
- Leighton, B. L., & Halpern, S. H. (2002). The effects of epidural analgesia on labor, maternal, and neonatal outcomes: A systematic review. *American Journal of Obstetrics and Gynecology*, 186(5), S69-S77. <u>http://dx.doi.org/10.1067/mob.2002.121813</u>
- Levinson, G., & Shnider, S. M. (1979). Catecholamines: The effects of maternal fear and its treatment on uterine function and circulation. *Birth*, 6(3), 167-174. <u>http://dx.doi.org/10.1111/j.1523-536x.1979.tb01329.x</u>
- Likis, F. E., Andrews, J. C., Collins, M. R., Lewis, R. M., Seroogy, J. J., Starr, S. A., ... & McPheeters, M. L. (2014). Nitrous oxide for the management of labor pain: a systematic review. *Anesthesia & Analgesia*, *118*(1), 153-167. http://dx.doi.org/10.1097/01.aoa.0000455280.655.3
- Lindholm, A., & Hildingsson, I. (2015). Women's preferences and received pain relief in childbirth–A prospective longitudinal study in a northern region of Sweden. *Sexual & Reproductive Healthcare*, 6(2), 74-81. <u>http://dx.doi.org/10.1016/j.srhc.2014.10.001</u>
- Mcguinnes, C., & Rosen, M. (1984). Enflurane as an analgesic in labour. *Anaesthesia*, *39*(1), 24-26. <u>http://dx.doi.org/10.1097/00132582-198412000-00028</u>

- Morgan, B., Bulpitt, C., Clifton, P., & Lewis, P. (1982). Effectiveness of pain relief in labour: survey of 1,000 mothers. *British Medical Journal (Clinical Research Edition)*, 285(6343), 689-690. <u>http://dx.doi.org/10.1136/bmj.285.6343.689</u>
- Nilsson, C., Bondas, T., & Lundgren, I. (2010). Previous birth experience in women with intense fear of childbirth. *Journal of Obstetric, Gynecologic, & Neonatal Nursing: Clinical Scholarship for the Care of Women, Childbearing Families, & Newborns, 39*(3), 298-309. doi:10.1111/j.1552-6909.2010.01139.x
- Nursing Theory. (2015). *Goal attainment*. Retrieved from <u>http://www.nursing-</u> theory.org/theories-and-models/king-theory-of-goal-attainment.php
- Onody, P., Gil, P., & Hennequin, M. (2006). Safety of inhalation of a 50% nitrous oxide/oxygen premix. *Drug Safety*, 29(7), 633-640. <u>http://dx.doi.org/10.2165/00002018-200629070-</u> 00008
- Pasha, H., Basirat, Z., Hajahmadi, M., Bakhtiari, A., Faramarzi, M., & Salmalian, H. (2012).
 Maternal expectations and experiences of labor analgesia with nitrous oxide. *Iranian Red Crescent Medical Journal*, 14(12), 792. <u>http://dx.doi.org/10.5812/ircmj.3470</u>
- Pita, C., Pazmiño, S., Vallejo, M., Salazar-Pousada, D., Hidalgo, L., Pérez-López, F., & Chedraui, P. (2012). Inhaled intrapartum analgesia using a 50-50 % mixture of nitrous oxide-oxygen in a low-income hospital setting. *Archives of Gynecology & Obstetrics*, 286(3), 627-631. doi:10.1007/s00404-012-2359-6
- Poole, J. (2003). Analgesia and anesthesia during labor and birth: Implications for mother and fetus. JOGNN: Journal of Obstetric, Gynecologic & Neonatal Nursing, 32(6), 780-793. <u>http://dx.doi.org/10.1177/0884217503258498</u>

- Posner, G., Black, A., Jone, G., & Dy, J. (2013). Oxorn-Foote Human Labor & Birth. (6th Ed.) New York, NY: McGraw Hill.
- Rooks, J. P. (2007, May). Use of nitrous oxide in midwifery practice–complementary, synergistic, and needed in the United States. *Journal of Midwifery & Women's Health*.
 pp. 186-189. <u>http://dx.doi.org/10.1016/j.jmwh.2007.02.017</u>
- Rooks, J. P. (2012). Labor pain management other than neuraxial: What do we know and where do we go next?. *Birth: Issues in Perinatal Care*, *39*(4), 318-322. doi:10.1111/birt.12009
- Rosenstein, M., Flood, P., Thiet, M. P., Nakagawa, S., Bishop, J., & Cheng, Y. (2014). 598: The use of nitrous oxide analgesia during labor at a single institution in the United States.
 American Journal of Obstetrics and Gynecology, 1(210), S294-S295.
 http://dx.doi.org/10.1016/j.ajog.2013.10.631

- Sinusas, K. & Gagliardi, A. (2001). Initial management of breastfeeding. *American Family Physician, 64*(6), 981-989. Retrieved from <u>http://www.aafp.org/afp/2001/0915/p981.html</u>
- Stefani, S. J., Hughes, S. C., Schnider, S. M., Levinson, G., Abboud, T. K., Henriksen, E. H., ...
 & Johnson, J. (1982). Neonatal neurobehavioral effects of inhalation analgesia for vaginal delivery. *Anesthesiology*, 56(5), 351-355. <u>http://dx.doi.org/10.1097/00132582-198212000-00020</u>
- Stewart, L. S., & Collins, M. (2012). Nitrous oxide as labor analgesia. *Nursing for Women's Health*, *16*(5), 398-409. http://dx.doi.org/10.1213/01.ane.0000445607.05453.f5

- Talebi, H., Nourozi, A., Jamilian, M., Baharfar, N., & Eghtesadi-Araghi, P. (2009). Entonox for labor pain: a randomized placebo controlled trial. *Pakistan Journal of Biological Sciences: PJBS*, 12(17), 1217-1221. <u>http://dx.doi.org/10.3923/pjbs.2009.1217.1221</u>
- Waldenström, U. (1999). Experience of labor and birth in 1,111 women. *Journal of Psychosomatic Research*, 47(5), 471-482. doi:10.1016/S0022-3999(99)00043-4
- Waldenström, U., & Irestedt, L. (2006). Obstetric pain relief and its association with remembrance of labor pain at two months and one year after birth. *Journal of Psychosomatic Obstetrics & Gynecology*, 27(3), 147-156.
 http://dx.doi.org/10.1080/01674820500433432