Bethel University

Spark

All Electronic Theses and Dissertations

2021

Postplacental Intrauterine Device Insertion: Efficacy and Barriers

Tommi Amanda Ladd Carrell Bethel University

Follow this and additional works at: https://spark.bethel.edu/etd

Part of the Nursing Midwifery Commons

Recommended Citation

Carrell, T. A. (2021). Postplacental Intrauterine Device Insertion: Efficacy and Barriers [Master's thesis, Bethel University]. Spark Repository. https://spark.bethel.edu/etd/111

This Master's thesis is brought to you for free and open access by Spark. It has been accepted for inclusion in All Electronic Theses and Dissertations by an authorized administrator of Spark.

POSTPLACENTAL INTRAUTERINE DEVICE INSERTION: EFFICACY AND BARRIERS

A MASTER'S PROJECT SUBMITTED TO THE GRADUATE FACULTY OF THE GRADUATE SCHOOL BETHEL UNIVERSITY

BY

TOMMI AMANDA CARRELL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NURSING

MAY 2021

BETHEL UNIVERSITY

	Postp	lacental	Intrauterine	Device	Insertion
--	-------	----------	--------------	--------	-----------

Efficacy and Barriers

Tommi Amanda Carrell

May 2021

Approvals:

Project Advisor Name: <u>Katrina Wu, APRN, CNM</u>
Project Advisor Signature:
Second Reader Name: Jane Wrede, PhD, APRN, CNM
Second Reader Signature:
Director of Nurse-Midwifery Program Name: <u>Jane Wrede</u> , PhD, APRN, CNM
Director of Nurse-Midwifery Program Signature:

Acknowledgments

To my beautiful children, thank you so much for your resilience and unconditional love during this challenging time. Matthew and Luke, thank you for your patience when life was chaotic and I could not be as present as I once was. To my sweet babies, Benjamin and Eloise—what a crazy time to come into this life. It is almost like God knew you would need a buddy in this hectic world so he sent us two! You are all four so good and full of life. Bringing all of you into this world is my greatest adventure. It is my hope that you all can see the importance of realizing goals and not becoming engulfed in a single role in life but instead maintaining your own sense of self no matter what comes.

To my husband, Thomas, thank you. While your own career did not always make it possible to provide support in a physical sense during this program, I have always felt your love and encouragement no matter the distance separating us. Thank you for sacrificing when you can to help me realize my own potential. Thank you for absorbing some of my responsibility and for being a great teammate!

I would also like to express my gratitude to my advisor, Katrina Wu. She has lifted me up in more ways than I can count throughout my three years in this graduate program. Her encouragement gave me confidence to continue when I wished to quit. Her grace helped me to thrive academically even though I was struggling. She is a true model of who I want to become as a practitioner and mentor.

My beautiful MWI cohort friends, I truly could not have completed this program without you. We have weathered tragedies together, celebrated together, and commiserated together. I cannot imagine this journey without all of you in it. I love you all more than you know.

Amanda Carrell

Abstract

Background/Purpose: As many as half of all women do not attend postpartum care and receive desired family planning care. Left with little to no resources for obtaining contraception, many go on to have subsequent unplanned pregnancies. The American College of Obstetricians and Gynecologists has stated that offering long-term, reversible contraception at the time of birth should be considered for these women, yet adoption of this procedure remains low. This literature review will evaluate the efficacy and advantages of postplacental intrauterine device placement and barriers to implementing the procedure.

Theoretical Framework: The Health Belief Model can be used to frame conversations about family planning and contraception choices. Because the Health Belief Model relies on a person recognizing a need for improved health status and empowers the person to make decisions autonomously; utilizing this model stresses the need for patients to have postplacental IUD placement available for choice.

Methods: A search of multiple databases was performed utilizing a PRISMA tool. Eighteen articles were identified as being relevant to the practice question and were analyzed for data and results. CINAHL, PubMed, and Scopus were utilized for article search. Articles that were published in the last ten years, peer-reviewed, and in English were considered. Qualitative articles regarding IUD placement perspective on breastfeeding or male partner perspective were excluded.

Results/Findings: Intrauterine device insertion rates were consistently higher in those groups that received the device postplacentally versus in the clinic postpartum. Rate of continued use at one year was as high or higher for those receiving devices placed postplacentally compared to in clinic postpartum, despite an increase in expulsion rates for devices placed postplacentally.

Parity and route of delivery were the most correlated factors influencing expulsion. Provider knowledge deficit and insurance reimbursement were identified as barriers.

Implications for Research and Practice: Nurse-midwives should use this information to lobby for this practice to be offered within facilities as well as at a state level for more expansive coverage of postplacental intrauterine insertion.

Keywords: Immediate postpartum intrauterine device placement, postplacental LARC, postplacental IUD, postplacental Mirena, postplacental Paragard, postpartum IUD, postpartum IUD after vaginal delivery, IUD short interval pregnancy, barriers to postplacental LARC, and barriers to postplacental IUD.

Table of Contents

Acknowledgements
Abstract4
Chapter I: Introduction8
Statement of Purpose
Evidence Identifying Need9
Significance to Nurse-Midwifery
Theoretical Framework
Summary12
Chapter II: Methods14
Search Strategies
Inclusion and Exclusion Criteria
Summary of Included Studies
Criteria Used for Evaluation of Literature
Summary
Chapter III: Literature Review and Analysis17
Synthesis of Matrix
Synthesis of Major Findings
Evidence of Need
Rates of Intention of IUD Use Postpartum vs. Actual IUD Use
Postpartum
Pregnancy Rates with PPIUD placement vs. Overall
Repeat Pregnancy Rate in United States

	Timing	20
	Expulsion	20
	Continued Use	20
	Pain During Insertion	21
	Factors Influencing PPIUD Expulsion	22
	Type of Intrauterine Device	22
	Route of Birth	22
	Parity	23
	Barriers to Providing PPIUD Insertion	23
	Provider Attitude and Knowledge Gap	23
	Provider Level of Education	24
	Reimbursement and State Policies	25
	Strengths and Limitations of Evaluated Literature	26
	Summary	26
Chapt	ter IV: Discussion, Implications, and Conclusions	29
	Literature Synthesis	29
	Trends and Gaps in the Literature	29
	Implication for Midwifery Practice	31
	Recommendations for Future Research	33
	Integrating the Health Belief Model	33
	Conclusion	33
Refere	rences	35
Appeı	ndix 1: Matrix of the Literature	41

Chapter One: Introduction

In the United States each year, 33% of pregnancies have an interpregnancy interval (IPI) less than the recommended 18 months between the end of one pregnancy and the beginning of another pregnancy (American College of Obstetricians and Gynecologists [ACOG], 2019). Women of color, women in lower socioeconomic groups, and other marginalized groups are at the highest risk for experiencing a shortened interpregnancy interval (ACOG, 2019). Because interpregnancy interval is a modifiable risk factor for worsened maternal and neonatal outcomes such as preeclampsia, prematurity, and low birth weight as well as maternal and neonatal mortality, care should be taken to allow women the greatest access possible to family planning resources (ACOG, 2019).

With nearly half of all pregnancies in the United State being unplanned, access to family planning resources is critical. Unplanned pregnancies and short-interval pregnancies contribute to adverse maternal and neonatal outcomes and perpetuate the cycle of poverty (ACOG, 2019). Recognizing this, the United States Department of Health and Human Services (DHHS) added multiple family planning goals to the *Healthy People 2030* national goals and now include access to family planning, reduction in adolescent pregnancy, and increase in use of contraception, particularly in populations at risk for unintended pregnancy (United States Department of Health and Human Services [DHHS], n.d.).

Statement of Purpose

The purpose of this paper is to review and synthesize the literature surrounding immediate postplacental administration of intrauterine devices, specifically identifying its efficacy and barriers to implementation.

Evidence Identifying Need

In order to aid in the decrease of unplanned pregnancies and improve perinatal outcomes, the American College of Obstetricians and Gynecologists (2020) issued *Committee Opinion 670*, an expert opinion on the use of immediate postpartum long-acting reversible contraception (LARC), including intrauterine devices (IUD) and the Nexplanon implant. This committee opinion states that "LARC should be offered as an effective option for postpartum contraception", particularly with adequate counseling on the risks and benefits; hospital organizations should also work to improve infrastructure to allow for this offering as well as seek to receive adequate and appropriate reimbursement, both publicly and privately funded (American College of Obstetricians and Gynecologists [ACOG], 2020). The committee goes on to recommend that LARC is unable to be administered immediately postpartum and therefore should be offered in the comprehensive postpartum time period. This ACOG committee statement is endorsed by the American College of Nurse-Midwives, the Society of Maternal-Fetal Medicine, the American Academy of Family Physicians, and the Association of Women's Health, Obstetric and Neonatal Nurses (ACOG, 2020).

In 2015, the Cochrane Library published a systematic review investigating the efficacy and appropriateness of offering immediate postplacental IUD placement. This systematic review concluded that while evidence may be limited, the potential risks of waiting for postpartum placement, such as the abrupt self-withdrawal of comprehensive postpartum care being reported as high as 50%, outweigh the risks of placement postplacentally, the largest of those being expulsion (Lopez et al., 2015). Even considering the potential for expulsion, insertion of postplacental IUDs have a positive impact on decreasing unintended pregnancies (Cohen et al.,

2016). The Cochrane systematic review did identify a lack of large population trials and noted that this is an area for future research (Lopez et al., 2015).

UpToDate addresses postplacental IUD insertion in its larger intrauterine device topic. In this expert guide, it is noted that postplacental IUD insertion is an acceptable method of offering contraception and family planning to postpartum patients (Bartz & Pocius, 2019). Bartz and Pocius also note that the ability to reach the fundus of the immediately evacuated uterus proves to be the biggest challenge to insertion. UpToDate concludes that research is overall supportive of routine use of postplacental IUD placement and includes procedural information to lessen expulsion (Bartz & Pocius, 2019).

While the need and potential advantages are identified through expert opinion and clinical decision-making tools, barriers such as provider knowledge and misinformation on the intervention show a critical need for further critical review and synthesis of the currently available literature. Published Cochrane reviews previously identified that postplacental IUD insertion should be considered for women at risk for not attending postpartum care; however, the one-year continuation of postplacental IUD was not identifiable in these reviews (Lopez et al., 2015).

Significance to Nurse-Midwifery

Midwifery care is hallmarked by a dedication to both public health and ensuring equitable access to care (American College of Nurse-Midwives [ACNM], 2020). Knowing that competent midwifery care is fundamentally rooted in advocating for patients' right to self-determination and access to care as well as a dedication to evidence based care, nurse-midwives must take the time to familiarize themselves ways they may increase access to desired contraception in a timeframe that is most accessible to patients seeking contraception

postpartum. Nurse-midwives are the premier champions of autonomous client decisions and as such, should be interested in postplacental intrauterine device insertion if it is a viable way to increase access to desired family planning.

Theoretical Framework

The Health Belief Model (HBM) addresses the concerns of short interpregnancy intervals and supports finding a solution to avoid the morbidity and mortality associated with such intervals. The HBM originated as a 1950's U.S. Public Health disease prevention model to help the United States population avoid disease (LaMorte, 2019). One hallmark of the HBM is the reliance on an individual's desire to avoid illness, or in the case of interpregnancy interval inadequacy, an individual's realization that shortened intervals of pregnancy result in complicated maternal and fetal paths, and an individual seeking to mitigate and avoid that risk. In all, the HBM charges that an individual must believe that they are at risk, that the risk is significant, that any action taken to mitigate the risk is beneficial, that the obstacles are not so substantial that the action is unattainable, there is a cue to action, and that self-efficacy is present.

Looking specifically at short interpregnancy interval through the lens of the HBM, it is apparent that this model is an excellent theoretical framework for the issue. According to the World Health Organization (WHO), when the HBM was utilized during counseling sessions with patients, there were fewer unintended pregnancies even though both the HBM and control group had the same contraceptive use rate; this showed that both the education on adverse outcomes with unplanned and short interval pregnancy as well as the encouragement of decision ownership make the HBM the best framework to approach pregnancy prevention conversations (WHO, 2012).

While there are critics of the Health Belief Model and its potential incompleteness, it should be noted that healthcare theories merely provide a framework for meeting an actual person where they are and discovering intrinsic motivation. Historically, contraception decisions were made completely by the clinician with little patient autonomy, and as such, the HBM previously made little sense to frame contraceptive care. However, with the progression of patient autonomy and ownership of care, the evolution of contraception and prevention of adverse outcomes can transfer back to the patient through the HBM. Because of this evolution to a partnership of care from a paternalistic approach, even patients who are the most at-risk to leave care or become pregnant prior to return can be counseled to make this decision in an autonomous and health promoting manner (Hall, 2012). Rather than determining that this framework does not fit into family planning, providers should be challenged to make their dialogue fit a script that incorporates the HBM, knowing that such a model provides a path to a patient's desire to achieve health improvement.

Summary

In the United States, 33% of second order or greater pregnancies have a shortened interpregnancy interval of less than 18 months between the completion of one pregnancy and the incept of the next (ACOG, 2019). Paired with a nearly 50% unplanned pregnancy rate in the United States and abysmal maternal and neonatal morbidity and mortality, it is clear that intervention is necessary. One of the most autonomous ways an individual is able to directly influence their own pregnancy interval and health is through family planning. While an individual may have barriers to access care after leaving the hospital postpartum, postplacental IUD offering is one way to capture at-risk individuals and offer immediate contraception as an option for family planning. A critical review of the literature surrounding efficacy of method,

continuation of use, and barriers to facilitating postplacental IUD placement is a necessary step to exploring how to improve access to postplacental IUD insertion as an option for women desiring to avoid pregnancy in the postpartum period and beyond.

Chapter II: Methods

In order to critically evaluate the literature surrounding intrauterine device placement at the time of placental delivery, a comprehensive search was performed and was depicted utilizing a PRISMA flow diagram (see Figure 1). This chapter summarizes the search strategy including databases and search terms utilized, inclusion and exclusion criteria, and quality of literature. In order to fully appreciate literature surrounding postplacental intrauterine device placement, reference lists for each study meeting criteria were also evaluated for additional studies.

Search Strategy

In order to give full consideration of all available data for review and synthesis, both the advantages and disadvantages of postplacental intrauterine device placement were analyzed via multiple database searches through Cumulative Index to Nursing and Allied Health Literature (CINAHL), PubMed, and Scopus. Search terms for each database included immediate postpartum intrauterine device placement, postplacental LARC, postplacental IUD, postplacental Mirena, postplacental Paragard, postpartum IUD, postpartum IUD after vaginal delivery, IUD short interval pregnancy, barriers to postplacental LARC, and barriers to postplacental IUD placement.

Inclusion and Exclusion Criteria

Inclusion criteria required that articles be original research published in peer-reviewed journals that pertained to postplacental insertion of intrauterine devices, available in the English language, available in full text, and published after 2010.

Some articles were individually excluded for specific reasons including studies measuring irrelevant outcomes such as breastfeeding rate or male partner attitude towards postplacental insertion of device, study settings in low-income countries due to difficulties

monitoring continued use, rates of infection, and other complications, and studies that explored early contraception in general rather than specifically postplacental IUD placement.

Summary of Included Records

In total, 72 records were identified through these search terms with 37 remaining after removing duplicate records. The titles and abstracts of the remaining 37 articles were screened, resulting in 20 articles. Following a full-text review, 18 articles met the full criteria for inclusion in this synthesis (see Figure 1). There were five randomized controlled trials, five mixed methods studies, four retrospective cohort studies, three prospective cohort studies, and one quasi-experimental trial. In general, studies were not limited to comparing copper versus Mirena LNG-IUS use; however, one study specifically evaluated the difference in expulsion between these two types of devices. Fifteen of the studies were based in the United States, two studies were based in India, and one study was based in Turkey.

Criteria Used for Evaluating Literature

The Johns Hopkins Research Evidence Appraisal Tool was applied to each study individually to grade the evidence level for each record. This tool appraises articles in a three-tier evidence level category system, with level I being the most stringently designed and level III being non-experimental (Dang & Dearholt, 2018). Additionally, the tool evaluates the study quality as high, good, or low regarding the consistency of results. In total, there were five studies of level I evidence, six studies of level II evidence, and nine studies of level III evidence. This was expected as randomization of intrauterine device placement is unlikely. Additionally, twelve of the studies were of high quality, seven were of good quality, and one was of low quality. The low-quality study was rated as such because of because high attrition prevented research completion; however, the potential implications remain important to the discussion.

With the level of evidence for each record determined, a literature matrix was completed that synthesized the following for each study: source, level of evidence, purpose, study design, results, strengths and limitations, implications for current practice, and implications for future research (See Table 1).

Summary

In order to fully appreciate both the limitations and the efficacy of postplacental intrauterine device insertion, 18 total articles were synthesized and critically examined. Not only was device insertion compared to other postpartum time periods of insertion, but limitations of both provider skill and attitude, as well as system-wide limitations were evaluated as part of this critical literature review. In order to effectively and objectively assess each study, the Johns Hopkins Research Evidence Appraisal Tool was used to categorize each record. After limiting research pieces and evaluating the quality of each, individual matrices were completed to produce a concise and thorough compilation of valuable data from the literature.

Chapter III: Literature Review and Analysis

Synthesis of the Literature Matrix

The matrix contains 18 unique pieces of literature. Included in the matrix are five randomized controlled trials, five mixed methods studies, four retrospective cohort studies, three prospective cohort studies, and one quasi-experimental trial. An appraisal of each study was performed utilizing the Johns Hopkins Research Evidence Appraisal Tool (Dang & Dearholt, 2018). Key analysis of purpose, sample/setting, level and quality of evidence, design, results, and strengths and limitations of the study were critically evaluated and recorded on the literature matrix (see Table 1). Additionally, author recommendations and implications of the literature, as they relate to implementing postplacental IUD placement were also considered for each piece of literature.

Synthesis of Major Findings

The 18 peer-reviewed articles appraised support for postplacental intrauterine device placement as an appropriate contraception choice. Eleven of the articles included in the matrix critically assessed the continued use of intrauterine devices when placed postplacentally versus the traditional interval placement of 6 to 8 weeks postpartum or later. Additionally, there were three articles that assessed the qualitative opinions of clinicians regarding placing intrauterine devices within ten minutes of placental expulsion. There was one qualitative assessment of attitudes regarding postplacental IUD insertion from each U.S. state as well as policies that either facilitate or act as a barrier to the procedure. Finally, the remaining studies evaluated barriers to receiving intrauterine devices in the postpartum period after discharge from the delivery stay.

Evidence of Need

Rates of Intention of IUD Use Postpartum vs. Actual IUD Use Postpartum

Two studies in particular specifically evaluated the rates of receiving an intrauterine device (IUD) in the postpartum period when it was not offered prior to hospital discharge. Glazer et al. (2010) surveyed 175 women in the postpartum setting and performed a retrospective cohort study to assess the reality of postpartum contraception. This study concluded that education regarding contraception has little impact on the final percentage of counseled women receiving contraception postpartum. Seventy-seven percent of women surveyed reported discussing birth control prenatally and 87% reported discussing contraception postpartum. At six months postpartum, 22% of those desiring intrauterine devices for contraception were still awaiting placement. When asked, 62% of those women wished that postplacental insertion was an available option. Of the 175 women that participated in the study, 29% reported not using birth control at all at six months postpartum and 32% reported using a suboptimal contraceptive method (Glazer et al., 2010).

In a retrospective cohort study, Bergin et al. (2012) sampled 708 women requesting intrauterine device placement and the effect that a two-visit policy had on rate of successful insertion. While this study did not focus solely on the postpartum course, the findings are relevant as only 385 of the women requesting intrauterine device placement were able to have an IUD inserted (Bergin et al., 2012). These women also waited an average of 43 days before the subsequent visit for device placement could take place. Of the women requesting intrauterine devices for postpartum birth control, only 50% were actually able to have one placed while 60% of gynecologic patients received a device related to the women not attending the actual insertion appointment. The further away a patient's address was from the clinic location, the more likely

she was to miss attendance of her insertion appointment. Additionally, this study found that 96% of clinicians surveyed require a two-visit policy to insert an intrauterine device (Bergin et al., 2012).

Pregnancy Rates with Postplacental IUD Placement vs. Overall Repeat Pregnancy Rate in US

Cohen et al. (2016) evaluated the repeat pregnancy rate in a sample of 82 adolescent postpartum women aged 13 to 22 years old. During this prospective cohort study, women were given information about postplacental intrauterine device use and encouraged to choose a birth control method prior to giving birth. Eighty-two women elected to have post placental intrauterine device placement with 74 receiving the LNG-IUS and eight choosing a CuIUD. Fourteen percent requested discontinuation within the first year, along with a 25% expulsion rate; however, only one pregnancy resulted from expulsion. Only 7.6% of postplacental intrauterine device users were pregnant at one year postpartum compared to an average subsequent pregnancy rate of 21% for women aged 13 to 22 in the United States. Participants' two-year pregnancy rate was 8.1% compared to the national average of 46.5% and at three years, the subsequent pregnancy rate was 17.7% in participants using an intrauterine device from postplacental insertion compared to the national average of 83.7% in women ranging from 13 to 22 years of age (Cohen et al., 2016).

The studies included in this critical review demonstrated that prenatal education did not have a large effect on the rate of IUD insertion at the time of birth; however, an overwhelming number of women would have chosen to have a postplacental IUD given the long wait time they experienced postpartum for an IUD placement (Glazer et al., 2010). Additionally, current trends of practice requiring two-visits prior to insertion were found to be prohibitive for women to receive desired contraception. Clinic commuting distance was also a factor influencing women's

ability to return for IUD placement. Finally, the pregnancy rate of women who were given the opportunity to receive an IUD postplacentally versus the overall repeat pregnancy rate in the United States demonstrates a lowered repeat pregnancy rate in the postplacental IUD group.

Timing of Insertion

Expulsion

Three studies consistently showed a higher expulsion rate when intrauterine devices were placed immediately postplacentally versus the traditional interval of 6 to 8 weeks postpartum (Dahlke et al., 2011; Kumar et al., 2019; Shukla et al., 2012). The nadir of postplacental intrauterine device insertion was 7.5% in a large retrospective cohort study (N = 673) at a tertiary care center in India (Kumar et al., 2019). Shukla et al. (2012) performed a prospective cohort study of 1,317 women in an Indian tertiary care center, making it one of the largest sample sizes of postplacental intrauterine device insertion studies. In this large sample, the postplacental intrauterine device expulsion rate was 10.68% (Shukla et al., 2012). The rates of expulsion from postplacental insertion were as high as 27% in one study (Dahlke et al., 2011).

Continued Use

Even with higher rates of expulsion with insertions in the immediate postplacental period, continued rate of use was consistently as high or higher in those who received the device immediately after expulsion of the placenta (Chen et al., 2010; Crocket et al., 2017; Soon et al., 2018; Whitaker et al., 2014). Whitaker et al. (2014) performed a randomized controlled trial with participants randomized into immediate postplacental insertion of LNG-IUS (n = 20) versus a traditional 6-to-8-week postpartum insertion (n = 22). The rate of use was 60% at 12 months in the postplacental IUD (PPIUD) group and 40% in the interval placement group despite the expulsion rate being significantly higher (p < .01) in the PPIUD group (20%) compared to 0% in

the interval group (Whitaker et al., 2014). Similarly, in a study of 96 intrauterine device insertions (50 PPIUD, 46 at 6 to 8 weeks), Chen et al. (2010) found that expulsion was still higher in the postplacental cohort compared to the interval group; however, continued use at six months was the same.

In a small pilot study, Soon et al. (2018) randomized eleven adolescents into two groups, with six patients receiving a postplacental intrauterine device and five receiving a postpartum intrauterine device at 6 to 8 weeks postpartum. All six postplacental placements occurred; however, at 6 weeks postpartum, two of the five interval placements were not achieved due to fallout from postpartum care (Soon et al., 2018). At six months, four out of the six postplacental devices remained with one patient falling out of care and having an unknown status and one experiencing expulsion and not desiring a replacement device; however, zero of the postpartum devices remained. Two of the postpartum placements had since been removed and those adolescents were pregnant at the six-month evaluation (Soon et al., 2018).

Crockett et al. (2017) performed a multi-year retrospective study of 776 women and found that 7% of women receiving postplacental intrauterine devices requested removal by one year of use versus 14% of those receiving the device at 6- to 8-week postpartum visits. Multiple studies concluded similarly positive rates of use at three and six months as well as one year postpartum despite the significantly higher expulsion rates of postplacental intrauterine devices.

Pain During Insertion

Dahlke et al. (2011) determined that intrauterine devices placed within ten minutes of placental expulsion or within the 2 days postpartum had lower pain ratings than those placed in the interval placement period of 6 to 8 weeks postpartum. On a five-point visual analog pain scale, postplacental placement and extended postpartum placement participants rated the pain of

insertion as significantly lower (1.07 out of 5 and 1.93 out of 5 respectively), compared to interval placement participants (3.13 out of 5; p < .001), which was a statistically significant finding (Dahlke et al., 2011).

Factors Influencing Postplacental Intrauterine Device Expulsion

Through literature synthesis, several variables appeared to influence postplacental intrauterine device effectiveness and expulsion rates: type of intrauterine device, route of birth, and parity.

Type of Intrauterine Device

In a randomized controlled trial, Laporte et al. (2020) found that Mirena (LNG-IUS) was less likely to expel when placed postplacentally compared to the Paragard IUD. The study randomized women into two groups: those receiving a progesterone containing LNG-IUS postplacentally (n = 70) and those receiving a copper intrauterine device postplacentally (n = 70). Copper devices resulted in a higher expulsion rate (36.7%) compared to LNG-IUS (20%; p = 12), though this was a marginal effect (Laporte et al., 2020).

Route of Birth

One study in particular examine birth route as a factor in postplacental IUD expulsion rates (Colwill et al., 2018). A retrospective cohort study (N = 169) determined that retention of intrauterine devices placed postplacentally was higher in cesarean birth (100%) than when placed postplacentally after a vaginal delivery (84%) when assessed at 6 weeks postpartum (p < .01). This study did find that cesarean insertion more frequently required ultrasound to ensure that the device was still in place (Colwill et al., 2018). String visualization occurred 93.1% of the time with inspection after a vaginal delivery versus only 44.2% of the time after a cesarean delivery.

Sucak et al. (2015) found in a prospective cohort study (N = 160) that the presence of labor was a stronger predictor of expulsion than route of delivery. Vaginal deliveries experienced an 11.3% expulsion rate, whereas laboring cesareans experienced an 8.9% expulsion rate compared to the non-laboring cesarean expulsion rate of 6.5% at 6 months (Sucak et al., 2015). These studies determined a difference in expulsion rate when comparing birth routes. Nonlaboring cesarean sections maintained the lowest rate of expulsion while expulsion rates were higher for postplacental placements following a laboring cesarean or vaginal birth.

Parity

Two studies noted the increased risk of expulsion among multiparous women (Laporte et al., 2020; Sucak et al., 2015). Laporte et al. (2020) found that women delivering their third baby or greater were six times more likely to have a postplacental device expulsion. Similarly, a prospective cohort study in Ankara, Turkey (N = 160) found that multiparity had a twofold increase in expulsion and was the only independent factor for expulsion (Sucak et al., 2015).

Barriers to Providing Postplacental Intrauterine Device Insertion

Through a critical review of this literature, five studies were identified that evaluated provider, facility, and state regulations as barriers to offering and executing postplacental intrauterine device insertion.

Provider Attitude and Knowledge Gaps

Moniz et al. (2017) performed a survey of 4,609 certified midwives and certified nurse-midwives with a 17% response rate (n = 794). This survey revealed that only 10% of these midwives in the United States felt comfortable placing postplacental intrauterine devices. This study also showed that 64% of respondents wished they had education on postplacental intrauterine device use. Forty-one percent reported that this was not the standard of practice at

their facility, 27% felt unskilled in the insertion, 16.4% reported reimbursement concerns limiting implementation, and 8.4% avoided the practice related to expulsion or perforation concerns (Moniz et al., 2017).

Holland et al. (2015) performed a survey of 82 intrauterine device utilizing clinicians, both physician and nurse-midwife, and discovered that 42% of respondents reported placing a postpartum intrauterine device at least once. A lack of training was indicated as the most common reason for not placing postplacental intrauterine devices (73%). Sixty percent of respondents indicated they were uncomfortable with postplacental intrauterine device use, 43% appropriately identified the level of expulsion risk associated with the practice, and 25% incorrectly believed there was an increased risk of organ perforation when intrauterine devices are inserted in the postplacental period. Participants rarely felt that postplacental intrauterine devices should never be an option for contraception (1.2%) and some believed postplacental intrauterine device insertion should always be a contraception option (14.5%; Holland et al., 2015).

Provider Level of Education

Cole et al. (2019) performed a retrospective cohort study to examine 116 patient charts with postplacental intrauterine device insertion. This study found that postgraduate year-one obstetric residents did have a higher expulsion rate; however, they also had the lowest cesarean delivery rate. The researchers were unable to determine if years of education or route of delivery was the causative variable in expulsion. Reports from this study revealed that there was no expulsion rate difference by postgraduate year when vaginal deliveries were isolated for interpretation, meaning it is likely that years of education was not causative for expulsion but rather, the route of birth (Cole et al., 2019).

Jatlaoui et al. (2014) evaluated the expulsion rate in 100 participants for immediate postplacental intrauterine device insertion after vaginal delivery. While an 11% expulsion rate was present, no expulsion difference was found when separated by postgraduate year of residency.

These two studies had opposing results initially, but when both birth route and postgraduate year were considered together, the expulsion rate was the same across all postgraduate years.

Reimbursement and State Policies

Moniz et al. (2015) conducted telephone interviews with Medicaid agents representing 40 out of the 50 of the United States. Ten states declined participation. This endeavor revealed that 15 states covered postplacental intrauterine device insertion, nine were considering coverage, and 16 were not considering coverage (Moniz et al., 2015). Qualitative interviewing in the states that did cover postplacental intrauterine device insertion noted that device cost was far less than the cost of pregnancy care or long-term care of a child qualifying for Medicaid and improving maternal and child health was a priority. Those states not considering postplacental intrauterine device coverage cited lack of advocacy from community providers and immediate budget constraints as limiting factors (Moniz et al., 2015). Medicaid representatives that were in states favorable for the practice saw the short-term cost of IUD placement to be a long-term positive investment, whereas states not in favor of the practice either determined the device cost was too high or that providers in that particular state were not campaigning for device availability in the inpatient setting.

Strengths and Limitations of the Evaluated Literature

One strength of this literature review was the clear consensus drawn regarding expulsion rates and continuation of use. All studies consistently reported that postplacental intrauterine device placement resulted in a higher rate of expulsion than interval placement at 6 to 8 weeks; however, they also consistently showed that there was a similar or greater continued use of intrauterine devices when they were placed postplacentally (Chen et al., 2010; Crocket et al., 2017; Soon et al., 2018; Whitaker et al., 2014). The number of participants in each study was large enough to draw conclusions related to efficacy of postplacental IUD placement.

Poor participant retention did impact some studies' ability to draw statistically significant conclusions. This does, however, highlight the ongoing issue of losing contact with women postpartum, in both research as well as practice, and stresses the importance of providing contraception services in a timely manner.

One particular shortcoming of all of the studies is that none focused on consistency with placement technique with some utilizing ring forceps, others ultrasound guidance, and yet others using the included deploying device.

Summary

Through an in-depth analysis, the 18 studies included in this review all identified postplacental intrauterine device insertion as an acceptable, if not preferable, contraception method for women seeking contraception shortly after birth; however, as many as 60% of women who desired IUD placement were unable to seek subsequent care to have the IUD placed, leaving them with no or s contraceptive access.

Despite the increased risk for expulsion due to parity, labor, and vaginal birth, the continuation rate at one year was still comparable or higher for those who had their IUD placed

postplacentally compared with insertion at 6 to 8 weeks postpartum. Providers self-identified their own knowledge deficits as a barrier to initiating this practice. Additionally, states with little or no desire to reimburse for inpatient postplacental device insertion make the practice exceedingly difficult.

Chapter IV: Discussion, Implications, and Conclusions

This critical literature review was performed to assess both the advantages of postplacental intrauterine device insertion as well as barriers to its facilitation. In total, 18 research studies were analyzed to determine trends in research as well as gaps and implications to practice. These 18 studies were examined using the John Hopkins Research Evidence Appraisal Tool to determine data quality and evidence level.

Literature Synthesis

This literature review was founded on the research question "Is postplacental intrauterine device placement safe and effective; and if so, what are the barriers to implementing this practice?" During the literature synthesis, the consistent theme identified was that postplacental IUD placement did have a higher expulsion rate than traditional interval IUD placement; however, compared to those receiving interval placement, the overall use at one year was as high or higher in those receiving postplacental IUD placement (Chen et al., 2010). Furthermore, there was no difference in the safety risks associated with postplacental IUD placement compared to interval placement (Jatlaoui et al., 2014). Additionally, lack of funding as well as provider knowledge gaps were identified as main barriers to implementing the procedure (Holland et al., 2015; Moniz et al., 2015, 2017).

Trends and Gaps in Literature

Studies consistently demonstrated that postplacental IUD placement was just as safe as interval placement. While there were significantly more expulsions in the groups that received postplacental IUD placement, the overall use was as high or higher when compared to intended interval placement at 6 to 8 weeks postpartum. The lack of placement was typically attributed to patients being lost to follow-up to have the device placed. With as many as 40% of women not

returning for postpartum care following the birth of a child, this is an enormous care gap that needs to be addressed (The American College of Obstetricians and Gynecologists [ACOG], 2018). While this was often listed as a study limitation, this is simply more evidence that contraceptive offerings need to be established in the immediate postpartum period. Another trend that consistently appeared in the literature was small sample sizes overall. Again, this was frequently listed as a study limitation; however, with only 7.2% of all women aged 15 to 44 utilizing IUD contraception at any point, the population is extrapolated and expected to be small (Guttmacher Institute, 2020).

Provider Perception

Several studies looked specifically at provider training and its contribution to successful continued intrauterine device use (Cole et al., 2019; Sucak et al., 2015). There was no consistent outcome. One study did show that level of postgraduate education was associated with expulsion outcome but when birth route was isolated, expulsion rates were similar for all postgraduate levels (Cole et al., 2019). Multiple studies collected qualitative data from both physicians and advanced practice clinicians and several knowledge gaps regarding technique and identifying risk factors were identified (Moniz et al., 2017). The overall trend for providers was that they felt untrained in postplacental IUD placement. Moniz et al. (2017) found that providers consistently reported that they would likely offer postplacental IUD placement with more training or that they would like to offer the service; however, the facility did not have the ability to offer this service due to the inability to capture charges for the placement. Further study is required to determine provider role in both rate of use as well as barriers to facility implementation of the practice.

Patient Perspective

Only one study discussed the patient perspective on offering postplacental intrauterine device placement. Glazer et al. (2011) surveyed women that did receive postplacental IUD as well as those that were not able to have placement. Those that did receive a postplacental IUD were pleased with being able to obtain the contraception. Of the women still waiting placement at six months postpartum, an overwhelming majority (62%) wished they had been able to receive an IUD prior to leaving the hospital. Additionally, significantly less discomfort was reported with postplacental insertion versus traditional interval placement (Dahlke et al., 2011).

Additional qualitative research is necessary to determine satisfaction, as most studies focused on efficacy. While one may assume satisfaction is related to continued use, that should be demonstrated statistically.

Cost as a Barrier

Few studies focused solely on barriers to instituting postplacental IUD placement. One study found that state Medicaid reimbursement was often associated with use of postplacental IUD (Moniz et al., 2015). Only 15 states in the United States currently have Medicaid coverage for inpatient IUD use. Device reimbursement is a barrier to implementation; however, it is only one layer of the barriers that exist and more studies, both qualitative and quantitative, must be conducted to identify all barriers and ways they may be eliminated.

Implications for Midwifery Practice

Even though postplacental IUD placement has been consistently demonstrated to be a safe and effective way to decrease unplanned pregnancy rates and in turn, increase the length of time between pregnancies, adoption of the practice is low. The two most common barriers to implementation are provider knowledge base and reimbursement. In a study performed by the

American College of Nurse-Midwives, only 10% of respondents felt comfortable placing a postplacental intrauterine device with 62% desiring training on the topic (Moniz et al., 2017). Given the Midwifery Hallmarks of both evidence-based care as well as the right to self-determination, nurse-midwives are poised to be the perfect lobbyists for postplacental IUD placements (ACNM, 2020). The evidence is clear that this procedure should be offered, particularly in populations at risk for loss of follow-up care. Additionally, patients' right to self-determination includes the ability to decide if and when a subsequent pregnancy should occur. With up to 40% of women never returning for postpartum care, a significant number of women continue life without the appropriate knowledge or tools to prevent unwanted pregnancy (ACOG, 2018). Postplacental IUD placement is a critical way for nurse-midwives to advocate for patients.

Surprisingly, prenatal education had little to do with ultimate choice of contraception.

Glazer et al. (2011) corroborated previous studies that prenatal counseling did little to affect overall contraception use. Seventy-seven percent of respondents in this study recalled discussing IUDs in the prenatal period but reported that it had little to do with their decision (Glazer et al., 2011). While it is helpful to know that contraception education needs to be addressed differently or more frequently, there is a need for further research to determine the best way to address family planning in the prenatal and hospital postpartum course.

There is little additional training necessary for postplacental IUD placement. Cole et al. (2019) demonstrated adequate placement of postplacental IUD placement after a single email training was offered. Theoretically, offering a one-time in-service or virtual training should be sufficient to execute the practice in facilities. Equipped with the low-risk training investment and the evidence that this is a safe and preferred method of contraceptive offering, nurse-midwives

should feel empowered to offer this information to facilities to help create a more equitable family planning environment, particularly in populations at risk for loss of follow-up care in the postpartum period.

Beyond a willingness to receive training and individually adopt the practice of postplacental intrauterine device placement, Certified Nurse-Midwives (CNMs) are in an excellent position as patient advocates to campaign for more states to reimburse fairly for this procedure immediately postpartum. In addition to promoting adoption at the state and facility levels, CNMs should be looking for ways to spread accurate training regarding both the procedural technique and the safety and efficacy of the practice. Furthermore, nurse-midwives are able to increase incidence of use with thorough patient counseling regarding immediate contraceptive options throughout pregnancy and on arrival for birth.

Integrating the Health Belief Model (HBM)

The Health Belief Model (HBM) relies on an individual's desire to avoid illness, or in the case of postpartum family planning, subsequent pregnancy with its cascade of potential negative health and socioeconomic sequelae. The HBM trusts that individuals are given the knowledge that they are at risk for an adverse outcome and that certain actions to mitigate risks are seen as beneficial. One key aspect of the HBM is that actions are attainable and obstacles are not so great that manipulation is futile. In this case, knowing that 40% of women are unable to attend postpartum care visits demonstrates a need to remove barriers. Additionally, other barriers for those seeking care, such as the average 43-day delay between requesting an IUD and placement of a device, further decrease the number of women able to practice self-determination with family planning and prevent undesired pregnancy (Bergin et al., 2012). This prohibitive

environment makes postplacental IUD placement a valid solution to enabling women to mitigate risk.

Giving women information multiple times prenatally and on admission for birth allows women to take ownership of their fertility, particularly when paired with education about risks of shortened interpregnancy interval. Utilizing the Health Belief Model and knowing the risks of unwanted pregnancy and potential expulsion of a postplacental intrauterine device, it is likely that many women, feeling ownership and empowerment, would elect to have an IUD placed and return for potential expulsion.

Conclusion

This critical literature review consistently found that postplacental intrauterine device placement is a valid option for women seeking immediate contraception post birth or those women at risk for not attending postpartum care. Several studies concluded that postplacental IUD placement should even be a preferred contraceptive offering for those populations at risk to not return for postpartum care after leaving the birthing facility. In total, 18 research studies were evaluated utilizing the Johns Hopkins Research Evidence Appraisal Tool with pertinent findings related to device expulsion, safety, continued use at time intervals such as three months, six months, and one year, provider knowledge gaps, variable state insurance practices, and patient perceptions. Identified barriers came from state reimbursement issues and provider knowledge gaps. While factors facilitating implementation of this procedure were not specifically studied, locations with access to the devices in the inpatient obstetric setting were most likely to be able to employ the technique.

Nurse-midwives are in a pivotal role with regards to promoting use of postplacental IUD placement. The unique hallmarks that guide the profession combined with utilizing the Health

Belief Model are perfectly aligned to encourage this practice be initiated to allow for evidence-based care and patient right to self-determination. Time spent counseling women during the prenatal and birthing periods allows for adjustments to education to ensure that women are able to make informed choices either prenatally or at the time of admission for birth. With the overwhelming evidence of its safety and efficacy, postplacental intrauterine device insertion is one critical way that nurse-midwives can positively impact the rate of unplanned pregnancy and shortened interpregnancy interval in the United States.

References

American College of Nurse-Midwives. (2020, March). *Core competencies for basic midwifery practice*.

https://www.midwife.org/acnm/files/acnmlibrarydata/uploadfilename/00000000050/AC

NMCoreCompetenciesMar2020 final.pdf

American College of Obstetricians and Gynecologists. (2019). Interpregnancy interval. *Obstetric Care Consensus*, 133(1), e51–e72. https://www.acog.org/-/media/project/acog/acogorg/clinical/files/obstetric-care-consensus/articles/2019/01/interpregnancy-care.pdf

American College of Obstetricians and Gynecologists. (2020). ACOG committee opinion:

Immediate postpartum long-acting reversible contraception.

https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2016/08/immediate-postpartum-long-acting-reversible-contraception

- Bartz, D. A., & Pocius, K. D. (2019). Intrauterine contraception: Insertion and removal.

 UpToDate. Retrieved January 12, 2021, from

 https://www.uptodate.com/contents/intrauterine-contraception-insertion-and-removal
- Bergin, A., Tristan, S., Terplan, M., Gilliam, M. L., & Whitaker, A. K. (2012). A missed opportunity for care: Two-visit iud insertion protocols inhibit placement. *Contraception*, 86(6), 694–697. https://doi.org/10.1016/j.contraception.2012.05.011
- Chen, B. A., Reeves, M. F., Hayes, J. L., Hohmann, H. L., Perriera, L. K., & Creinin, M. D. (2010). Postplacental or delayed insertion of the levonorgestrel intrauterine device after vaginal delivery. *Obstetrics & Gynecology*, 116(5), 1079–1087.
 https://doi.org/10.1097/aog.0b013e3181f73fac

- Cohen, R., Sheeder, J., Arango, N., Teal, S. B., & Tocce, K. (2016). Twelve-month contraceptive continuation and repeat pregnancy among young mothers choosing postdelivery contraceptive implants or postplacental intrauterine devices. *Contraception*, *93*(2), 178–183. https://doi.org/10.1016/j.contraception.2015.10.001
- Cole, M., Thomas, S., Mercer, B. M., & Arora, K. (2019). Impact of training level on postplacental levonorgestrel 52 mg intrauterine device expulsion. *Contraception*, 99(2), 94–97. https://doi.org/10.1016/j.contraception.2018.11.003
- Colwill, A., Schreiber, C., Sammel, M., & Sonalkar, S. (2018). Six-week retention after postplacental copper intrauterine device placement. *Contraception*, 97(3), 215–218. https://doi.org/10.1016/j.contraception.2017.10.012
- Crockett, A. H., Pickell, L., Heberlein, E. C., Billings, D. L., & Mills, B. (2017). Six- and twelve-month documented removal rates among women electing postpartum inpatient compared to delayed or interval contraceptive implant insertions after medicaid payment reform. *Contraception*, 95(1), 71–76. https://doi.org/10.1016/j.contraception.2016.07.004
- Dahlke, J. D., Terpstra, E. R., Ramseyer, A. M., Busch, J. M., Rieg, T., & Magann, E. F. (2011).

 Postpartum insertion of levonorgestrel–intrauterine system at three time periods: A prospective randomized pilot study. *Contraception*, 84(3), 244–248.

 https://doi.org/10.1016/j.contraception.2011.01.007
- Dang, D., & Dearholt, S. (2018). *Johns Hopkins nursing and evidence-based practice: Model and guidelines* (3rd ed.). Sigma Theta Tau International.
- Glazer, A. B., Wolf, A., & Gorby, N. (2011). Postpartum contraception: Needs vs. reality.

 *Contraception, 83(3), 238–241. https://doi.org/10.1016/j.contraception.2010.07.002

- Guttmacher Institute. (2020, January 22). *Contraceptive use in the United States*. https://www.guttmacher.org/fact-sheet/contraceptive-use-united-states
- Hall, K. (2012). The health belief model can guide modern contraceptive behavior research and practice. *Journal of Midwifery & Women's Health*, *57*(1). https://doi.org/10.1111/j.1542-2011.2011.00110.x
- HealthyPeople 2030. (2020). Reduce the rate of fetal deaths at 20 or more weeks of gestation.

 Healthy People 2030. https://health.gov/healthypeople/objectives-and-data/browse-objectives/pregnancy-and-childbirth/reduce-rate-fetal-deaths-20-or-more-weeks-gestation-mich-01
- Holland, E., Michelis, L., Sonalkar, S., & Curry, C. L. (2015). Barriers to immediate post-placental intrauterine devices among attending level educators. *Women's Health Issues*, 25(4), 355–358. https://doi.org/10.1016/j.whi.2015.03.013
- Jatlaoui, T. C., Marcus, M., Jamieson, D. J., Goedken, P., & Cwiak, C. (2014). Postplacental intrauterine device insertion at a teaching hospital. *Contraception*, 89(6), 528–533.
 https://doi.org/10.1016/j.contraception.2013.10.008
- Kumar, S., Srivastava, A., Sharma, S., Yadav, V., Mittal, A., Kim, Y., Nash-Mercado, A.,
 Reijneveld, S. A., & Sood, B. (2019). One-year continuation of postpartum intrauterine
 contraceptive device: Findings from a retrospective cohort study in India. *Contraception*,
 99(4), 212–216. https://doi.org/10.1016/j.contraception.2018.12.003
- LaMorte, W. (2019). *The health belief model*. http://sphweb.bumc.bu.edu/otlt/MPH-Modules/SB/BehavioralChangeTheories/BehavioralChangeTheories2.html

- Laporte, M., Marangoni, M., Surita, F., Juliato, C. T., Miadaira, M., & Bahamondes, L. (2020).

 Postplacental placement of intrauterine devices: A randomized clinical trial.

 Contraception, 101(3), 153–158. https://doi.org/10.1016/j.contraception.2019.12.006
- Moniz, M. H., Dalton, V. K., Davis, M. M., Forman, J., Iott, B., Landgraf, J., & Chang, T. (2015). Characterization of medicaid policy for immediate postpartum contraception. *Contraception*, 92(6), 523–531. https://doi.org/10.1016/j.contraception.2015.09.014
- Moniz, M. H., Roosevelt, L., Crissman, H. P., Kobernik, E. K., Dalton, V. K., Heisler, M. H., & Low, L. (2017). Immediate postpartum contraception: A survey needs assessment of a national sample of midwives. *Journal of Midwifery & Women's Health*, 62(5), 538–544. https://doi.org/10.1111/jmwh.12653
- Shukla, M., Qureshi, S., & Chandrawati. (2012). Post-placental intrauterine device insertion-a five year experience at a tertiary care centre in north India. *Indian Journal of Medical Research*, 136(3), 432–435.
- Soon, R., McGuire, K., Salcedo, J., & Kaneshiro, B. (2018). Immediate versus delayed insertion of the levonorgestrel intrauterine device in postpartum adolescents: A randomized pilot study. *Hawaii Journal of Medicine and Public Health*, 77(3), 60–65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845021/
- Sucak, A., Ozcan, S., Çelen, Ş., Çağlar, T., Göksu, G., & Danışman, N. (2015). Immediate postplacental insertion of a copper intrauterine device: A pilot study to evaluate expulsion rate by mode of delivery. *BMC Pregnancy and Childbirth*, 15(1). https://doi.org/10.1186/s12884-015-0637-6

- The American College of Obstetricians and Gynecologists. (2018, May). *Optimizing postpartum*care [PDF]. https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2018/05/optimizing-postpartum-care
- United States Department of Health and Human Services. (n.d.). Family planning healthy people 2030 | health.gov. Healthy People 2030.

https://health.gov/healthypeople/objectives-and-data/browse-objectives/family-planning

Whitaker, A. K., Endres, L. K., Mistretta, S. Q., & Gilliam, M. L. (2014). Postplacental insertion of the levonorgestrel intrauterine device after cesarean delivery vs. delayed insertion: A randomized controlled trial. *Contraception*, 89(6), 534–539.

https://doi.org/10.1016/j.contraception.2013.12.007

interventions-contraception

World Health Organization. (2012). *Theory-based interventions for contraception*. https://extranet.who.int/rhl/topics/fertility-regulation/contraception/theory-based-

Figure 1. PRISMA Flow Diagram

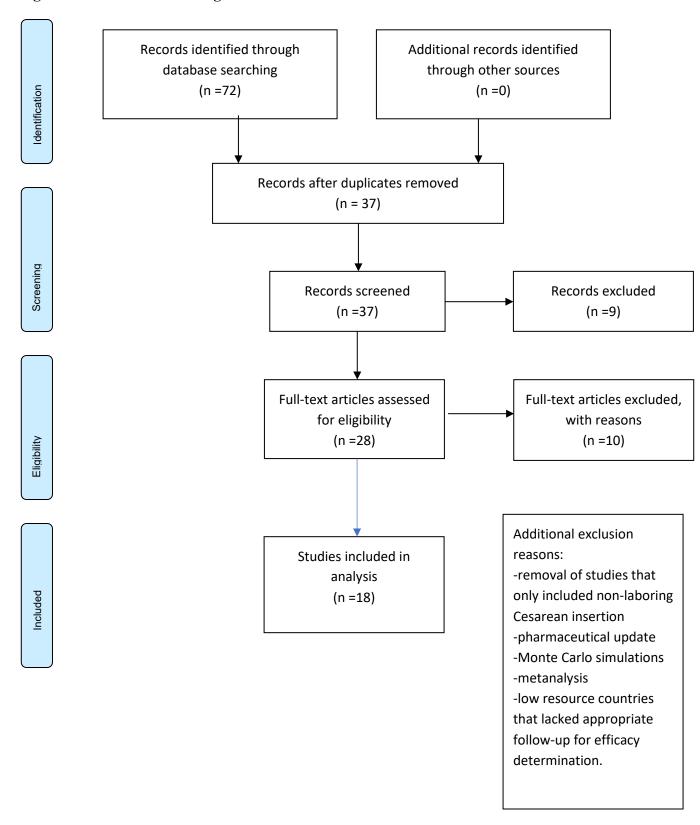


Table 1. Literature Review Matrix

Source: Bergin, A., Tristan, S., Terplan, M., Gilliam, M. L., & Whitaker, A. K. (2012). A missed opportunity for care: Two-visit IUD insertion protocols inhibit placement. *Contraception*, 86(6), 694–697. https://doi.org/10.1016/j.contraception.2012.05.011

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Retrospective study	Of the 708 women	Strengths:
Examine the		requesting IUD, only	-Because women were
potential for two	Study examined 708 women	385 were actually able	IL Medicaid, they
visit IUD process	who requested IUD over a	to return for placement	could not attempt
to limit access to	one year period. A two visit	with a median wait of	placement at a different
birth control	IUD policy was initiated,	43 days between	provider as the state
	requiring one visit to request	appointments. 50% of	only allows one order.
Sample/Setting:	an IUD and a second one 2-3	women requesting IUD	-Large sample size.
708 women	weeks later for placement.	at pregnancy related	
requesting IUD in	Retrospective review of	visits returned for	Limitations:
a primarily low	orders and paper charts was	placement and 60% of	Utilizing medical
income clinic with	utilized to determine rate at	women requesting at	billing records limited
a mostly Medicaid	which women actually	GYN visits returned.	statistics that could be
insured population	obtained IUD.	Single women were	assessed.
in an urban		less likely to return	-Unable to determine
university medical		than married women.	reason for
center		Race, age, and type of	nonplacement based on
		IUD did not have an	retrospective nature.
Level of		impact.	-Limited population
evidence:			diversity.
II		Conclusion:	-No comparison to rate
		Two-visit IUD	with single visit
Quality of		placement is	placement.
evidence:		prohibitive to desired	
High		contraception.	

Author Recommendations: Single visit IUD placement significantly increases rate of use.

Implications: Postpartum women only have desired postpartum IUD placed at a 50% rate in the outpatient setting. 96% of clinicians report a 2 visit policy related to insurance, further limiting options for women. An average of 43 days passed between being able to request an IUD and have one placed.

Source: Chen, B. A., Reeves, M. F., Hayes, J. L., Hohmann, H. L., Perriera, L. K., & Creinin, M. D. (2010). Postplacental or delayed insertion of the levonorgestrel intrauterine device after vaginal delivery: a randomized controlled trial. *Obstetrics and Gynecology*, *116*(5), 1079–1087. doi:10.1097/AOG.0b013e3181f73fac

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Prospective cohort study	Conclusion:	Strengths:
Compare use of		At six months, use was	Random assignment
LNG-IUS at 6	Pregnant women that	similar in both groups.	into group of women all
months postpartum	desires LNG-IUS were	Even though expulsion	desiring LARC
when placed	randomly assigned at the	was significant higher in	prevented inadvertent
postplacentally vs.	time of labor to either	the immediate group,	bias coming from the
delayed insertion.	immediate postplacental	women sought care for	sample. Scrupulous
	IUD placement or	replacement. This paired	removal of women not
Sample/Setting:	traditional 6-8 week	with women being less	meeting criteria allowed
50 postplacental	postpartum IUD	likely to follow-up	for good internal
placement	placement with expelled	postpartum and request	validity.
46 delayed until 6-8	IUDs replaced if patients	an LNG-IUS accounts for	
weeks placement	requested.	the similar use in both	Limitations:
		populations.	Limitations included
	Disqualifiers were		inconsistent insertion
Johns Hopkins	intrapartum hemorrhage		techniques and skill
Evidence	or infections, as well as		level.
Appraisal	cesarean.		
Strength: I			
	Phone surveys		
Quality: Good	performed at 3 and 6		
	months post-placement.		

Author Recommendations:

Offer postplacental LNG-IUS in populations at risk to not seek delayed insertion. US for high fundal placement to avoid complications of expulsion seen in study.

Implications: Placing IUDs immediately post placentally is similarly effective to that of the traditional last visit of a postpartum course at six to eight weeks postpartum. Even though the rate of use at six months is similar, postplacental IUD placement had an expulsion rate of 24% compared to the 6-8 week placements. Because of this postplacental IUD insertion should be considered in populations where postpartum visit attendance is low. If the likelihood of attending postpartum appointment at 6-8 weeks is high, reserve placement for then.

Source: Cohen, R., Sheeder, J., Arango, N., Teal, S. B., & Tocce, K. (2016). Twelve-month contraceptive continuation and repeat pregnancy among young mothers choosing postdelivery contraceptive implants or postplacental intrauterine devices. *Contraception*, 93(2), 178–183. https://doi.org/10.1016/j.contraception.2015.10.001

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Prospective Cohort Study	14% requested	Strengths:
To determine one		discontinuation within	-All patients included
year continuation	Women were given PPIUD	the first year. 25%	desired the type of
and repeat	information in the second	experienced expulsion.	contraception they
pregnancy rate	trimester and all women	94% of expulsions	received, therefore
with postplacental	through CAMP were	were within 12 weeks	motivation for success
IUD (PPIUD)	encouraged to choose a	PP. PP with 15/17	allowed for best case
	method of birth control prior	expulsions recognized	results.
Sample/Setting:	to birth. Those that chose	by participant.	-Prospective non-
82 13-22 year old	PPIUD were included in this	7.6 pregnancy rate at	randomization.
women receiving	study. Records were	one year. 1 pregnancy	-Excellent follow-up
LNG-IUS $(n = 74)$	reviewed at 6 and 12 months	from expulsion and	database for
and CuIUD (n =	postpartum to determine IUD	rest were from	completeness of
8) at Children's	continuation and pregnancy	requested removal and	results.
Hospital	rate.	no reliable	Limitations:
Colorado.		contraception.	- Convenience
		Conclusion:	sampling vs. large scale
Level of		Continued use of IUD	randomized population
evidence:		at one year was high.	- Sample limited to
II		and even though	younger patients
		expulsion was higher	
Quality of		than baseline IUD	
evidence:		expulsion, overall use	
High		at one year is similar.	
		Also, pregnancy rate	
		extensively lower than	
		general pregnancy rate	
		for women 13-22 years	
		old.	

Author Recommendations: Providers can recommend PPIUD for short interpregnancy interval pregnancy prevention; however, because of increased expulsion rates, follow-up should be emphasized.

Implications: Only 7.6% of participants were pregnant at one year compared to the average of 21% in the U.S. Participants had 2 year pregnancy 8.1 and 3 year 17.7 vs non-LARC CAMP participants having a 2 year pregnancy rate of 46.5% and 83.7% at 3 years.

Source: Cole, M., Thomas, S., Mercer, B. M., & Arora, K. (2019). Impact of training level on postplacental levonorgestrel 52 mg intrauterine device expulsion. *Contraception*, 99(2), 94–97. https://doi.org/10.1016/j.contraception.2018.11.003

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Retrospective Cohort Study	1506 deliveries in six	Strengths:
Evaluation of		months with 116	Retrospective study
correlation	Chart review of insertion and	receiving PPIUD	allowed comprehensive
between expulsion	clinical outcome of 116	(7.7% of births) with	review of pertinent
of PPIUD and	patients receiving PPIUD	75% continued use at 6	information without
PGY level	following a single email	months. 101 placed	having concern of
	training of insertion provided	manually, 8 placed	fallout from study
Sample/Setting:	to providers.	with ring forceps, 6	
116 patients with		with inserter. Only 2	Limitations:
PPIUD at a single		used ultrasound. Using	-Varied methods of
facility Cleveland,		the inserter resulted in	insertion
OH.		no expulsion and	-Limited population
		forceps the highest.	receiving PPIUD
Level of		PGY was not	-One facility results
evidence:		correlated to expulsion	- Based on limited
Level II		in VD.	education re: insertion
		Conclusion:	- Appx 75% follow-up
Quality of		PPIUD retention is	availability
evidence:		affected by provider	-Single type of IUD
Good		training level and route	
		of delivery but unclear	
		which one is the	
		meaningful factor.	

Author Recommendations: More evaluation to determine route of delivery, provider level of expertise, and method of insertion to examine which is the causative reason for increased expulsion; larger sample sizes in future studies. More training provided and then reevaluate if PGY level was correlated to expulsion.

Implications: Skill level of provider may indicate likelihood of expulsion, though later studies indicated that explicit and comprehensive training may make the larger difference.

Source: Colwill, A., Schreiber, C., Sammel, M., & Sonalker, S. (2018, March). Six-week retention after postplacental copper intrauterine device placement. *Contraception*, *97*(*3*), 215-218. https://doi.org/10.1016/j.contraception.2017.10.012

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose: To	Retrospective Cohort	Conclusion:	Strengths: Strengths of
evaluate retention	Study	Cesarean deliveries had a	study include the
and complications		higher retention rate than	comprehensive
of CuIUD use at 6	Retrospective data	vaginal deliveries at six	documentation of
weeks postpartum	collection of copper	weeks (100% vs. 84%, p	clinical practice
when IUD was	IUDs placed within ten	= .01); however cesarean	outcomes.
placed immediately	minutes of placenta	delivery resulted in	
postplacental.	removal. 137 vaginal	higher rates of more	Limitations:
	deliveries were	significant evaluation of	- 20% of women were
Sample/Setting:	evaluated and 73	IUD placement like	lost to follow-up when
169 women	cesarean deliveries were	ultrasonography than post	reviewing the postnatal
delivering at	evaluated. Retention and	vaginal delivery	records due to
Hospital of the	complication data was	placement because	retrospective aspect of
University of	recorded.	strings were visible more	the study.
Pennsylvania		often in vaginal delivery	- Limited to copper IUD
		placements (93.1% vs.	only, no LNG-IUS
Level of Evidence:		44.2%)	considered.
III			
Quality: Good			

Author Recommendations:

This author recommends studying the clinical significance of PPIUD expulsion further.

Implications: PPIUD should be considered a viable contraceptive method, particularly if postpartum insurance coverage is lacking or risk of loss of follow-up shows need to capture women at the time of birth for contraceptive offering.

Source: Crockett, A. H., Pickell, L., Heberlein, E. C., Billings, D. L., & Mills, B. (2017). Six- and twelve-month documented removal rates among women electing postpartum inpatient compared to delayed or interval contraceptive implant insertions after Medicaid payment reform. *Contraception*, 95(1), 71–76. https://doi.org/10.1016/j.contraception.2016.07.004

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose: To	Retrospective study of 776	4% total from both	Strengths:
evaluate removal	women using medical record	groups reported	Because of the
rates of women	review. Women all received	removal with no	population studied, cost
receiving PPIUD	LNG-IUS from 7/2007-	statistical difference	and availability did not
vs. interval IUD	6/2014. Comparison of rate	between the two	limit women that
placement.	and reason for removal at 6	groups at 6 months. At	otherwise wished to
	months and 12 months for	12 months, 12% total	have the device placed.
Sample/Setting:	both PPIUD and interval IUD	women reported	
776 Medicaid-	placement.	removal. 7% of PPIUD	Limitations:
enrolled women at		reported removal at 12	Only studied Medicaid
a regional		months vs. 14% of	population in a state
perinatal care		outpatient inserts.	that had coverage of
center in upstate		Conclusion:	the device. May not be
SC.		In a setting that	relevant for other
		Medicaid pays for	populations.
Level of		LARC, less women	
evidence:		removed LNG-IUS	
I		devices than their	
		outpatient	
Quality of		counterparts.	
evidence:			
High			

Author Recommendations: Medicaid and insurance payment policies that remove institutional barriers to PPIUD LARC may optimize family planning desires.

Implications: Most studies focus on inadvertent expulsion; however, this study focused on elective removal, which was less in PPIUD placements.

Source: Dahlke, J. D., Terpstra, E. R., Ramseyer, A. M., Busch, J. M., Rieg, T., & Magann, E. F. (2011). Postpartum insertion of levonorgestrel–intrauterine system at three time periods: A prospective randomized pilot study. *Contraception*, *84*(3), 244–248. https://doi.org/10.1016/j.contraception.2011.01.007

Purpose/Sample	Design	Results	Strengths/Limitations
1 at pose/Sample	(Method/Instruments)	Results	Strengths/Elimitations
Purpose:	Randomized controlled trial	Use at 6 months was	Strengths:
To determine	Transcomized controlled that	comparable in all arms:	-3 arms of
efficacy of LNG-	53 women desired Mirena	93% IPP, 87% EP,	randomization
IUS placement at	birth control and were	94% INT	-Federal facility
three different	randomized into three arms—	J 170 11 (1	without insurance and
intervals.	10 minutes postplacental,	Though there was a	infrastructure
	between 10 minutes and 48	higher rate of	constraints
Sample/Setting:	hours post-delivery, and at 6	expulsion in the	
46 women in the	week postpartum visit.	PPIUD arm (27%),	Limitations:
Naval Medical	The method of insertion was	many of these	-Small sample
Center at	standardized and post	participants returned to	-Sample limited to
Portsmouth	insertion questions regarding	care for replacement,	military insured
between Aug 2009	satisfaction were at 3 and 6	making IUD usage	patients without
and Jan 2010.	months postpartum.	comparable across the	insurance limitations
-15 PPIUD	• •	three arms at 3 and 6	
insertion		months. The PPIUD	
-15 for >10		arm rated pain	
minute but <48		significantly less than	
hour		the other two groups	
-16 delayed		using a visual analog	
insertion 6 weeks		scale (1-5 with 5 being	
		most painful). IPP and	
Level of		EP had a scale of 1.07	
evidence:		and 1.93 respectively	
Level II		while INT had a VAS	
		of 3.13 with a p =	
Quality of		<.001.	
evidence:			
Good			

Author Recommendations:

Future research should include larger sample size and various ways to ensure patient follow-up.

Implications: Immediate postplacental LNG-IUS insertion showed a 27% expulsion rate compared to 5-6% in the 6 week postpartum group. Even with this considered, continued use at both three and six months was virtually the same in all three arms given that those that had expelled IUDs did have them reinserted. Additionally, pain during and after insertion was significantly less when placed immediately postplacentally.

Source: Glazer, A. B., Wolf, A., & Gorby, N. (2011). Postpartum contraception: Needs vs. reality. *Contraception*, 83(3), 238–241. https://doi.org/10.1016/j.contraception.2010.07.002

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Retrospective Cohort Study	77% women recall	Strengths:
To determine		discussing birth control	Diverse sample of
whether patient	Written surveys were issued	prenatally and 87%	participants Good
education about	to women postpartum prior to	postpartum. 30%	capture of quantitative
contraception had	discharge from delivery stay	report conversation	data.
an effect on use of	to evaluate recollection of	about IUD prenatally	
contraception and	discussing contraception both	and 31% in hospital.	Limitations:
attitude towards	prenatally and in the office.	23% report that they	-Low retention rate
postplacental IUD	Written surveys were also	would have liked the	
offering.	mailed at 4 and 6 months	option to have an IUD	
	postpartum to evaluate use of	placed postplacentally.	
Sample/Setting:	contraception and appeal of a	5% of participants	
175 postpartum	postplacental IUD offering.	were using IUD at 6	
women in an		months PP with 22%	
urban setting in		still awaiting	
US		placement. Of those	
		22%, 62% would have	
Level of		elected to have	
evidence:		postplacental	
Level III		placement if offered.	
		29% report not using	
Quality of		birth control at 6	
evidence:		months and 32% report	
High		using suboptimal birth	
		control.	
		Conclusion:	
		Contraception	
		education does not	
		have a great impact on	
		contraceptive use.	
		Offering postplacental	
		IUD may improve	
		contraceptive use.	

Author Recommendations: While this study corroborates previous limited studies about the lack of effect counseling has on contraceptive use, more studies are needed to determine the optimal way to encourage use of contraception.

Implications: Prenatal counseling did not have a large effect on use of contraception. Many women that desire IUD postpartum are left to wait for placement. Of those waiting, a majority would have preferred a postplacental option.

Source: Holland, E., Michelis, L., Sonalkar, S., & Curry, C. L. (2015). Barriers to immediate post-placental intrauterine devices among attending level educators. *Women's Health Issues*, 25(4), 355–358. https://doi.org/10.1016/j.whi.2015.03.013

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose: To	Qualitative Survey	42% reported placing a	Strengths:
evaluate barriers		PPIUD. Most common	-Breadth of providers
to placing PPIUD	Online survey sent to OB	reason for not placing	(OBGYN, FP, CNM), -
for providers	providers at seven different	included: lack of	-Participant anonymity
	facilities, assessing	training (73%),	allows for more honest
Sample/Setting:	knowledge, training, and	uncomfortable (60%),	response
82 CNM and	experience.	not available at facility	
physicians		(50%). 43%	Limitations:
		appropriately identified	Each institution likely
Level of		expulsion risk. 25%	did not survey every
evidence:		inappropriately	provider
III		believed increased	-No direct
		perforation risk was	communication with
Quality of		present. 8% believed	participants,
evidence:		increased infection	Because the survey was
High		risk. 1.2% never an	likely forwarded, there
		option to place PPIUD,	is no way to know
		14.5% always an	response rate.
		option	- No specifics of when
		Conclusion:	a provider would
		Most providers	utilize PPIUD.
		reported PPIUD	-Stratification by
		acceptable at least	facility was uneven r/t
		some of the time	voluntary response.
		(85%) although there	
		were knowledge gaps	
		on risks and providers	
		IDed need for training	
		and availability within	
		facility.	

Author Recommendations: Comprehensive surveying of all providers vs. facility targeted choices. This survey was disseminated in a non-controlled manner and all providers should have opportunity to respond. This survey is enough evidence to push for amendment of Medicaid policy to positively affect reimbursement—one of the bigger barriers to implementation. Training and facility policy changes are also required.

Implications: Although the risk of expulsion is high, the overall benefit of PPIUD to decrease unintended short interpregnancy interval is greater. Acceptance of practice high but knowledge and practical application of skill/service is low.

Source: Jatlaoui, T. C., Marcus, M., Jamieson, D. J., Goedken, P., & Cwiak, C. (2014). Postplacental intrauterine device insertion at a teaching hospital. *Contraception*, 89(6), 528–533. https://doi.org/10.1016/j.contraception.2013.10.008

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Prospective cohort study	88% of participants	Strengths:
To evaluate the		able to be contacted for	-Ability to demonstrate
effectiveness and	Women able to choose this	a 19% expulsion rate.	a standardized and
safety of PPIUD	contraception option prior to	Zero pregnancies or	efficient provider
in a teaching	delivery. A one-time training	perforations. 11%	training model
facility,	was provided to obstetric	infection rate. No	-Adequate follow-up.
particularly in	residents with refreshers	expulsion difference in	
non-expert	every six weeks. Ultrasound	PGY years; biggest	Limitations:
clinicians	and ring forceps were used	difference was parity	-Smaller
	each time. 4 week, 6 week	with multiparous	-Limited population
Sample/Setting:	visits established placement	women accounting for	demographics.
100 participants	and satisfaction. 3 month and	the vast majority of	
desiring PPIUD at	6 month surveys evaluated	expulsion; only one	
Emory Hospital,	satisfaction and continued	prime expulsion.	
Atlanta, GA	use.		
		Conclusion:	
Level of		PPIUD is both safe and	
evidence:		effective; additionally,	
II		level of training had no	
		implication to efficacy.	
Quality of			
evidence:		High infection rate is	
High		similar to non-PPIUD	
		insertion infection rate,	
		which is high in Fulton	
		Co, GA.	

Author Recommendations: PPIUD can be safely initiated even with no prior experience with PPIUD insertion and may positively impact unintended pregnancy rate, especially for those otherwise at risk for non-return to postpartum care. The lack of increased expulsion by lower experienced clinicians is in contrast to previous literature.

Further studies in expulsion related to parity or anesthesia needed.

Implications: This study showed safe and effective use of PPIUD resulted in zero pregnancies at 6 months regardless of increased expulsion rate. Initiating basic standardized training for PPIUD and making this an available practice will increase contraceptive use and decrease unintended pregnancy.

Source: Kumar, S., Srivastava, A., Sharma, S., Yadav, V., Mittal, A., Kim, Y., Nash-Mercado, A., Reijneveld, S. A., & Sood, B. (2019). One-year continuation of postpartum intrauterine contraceptive device: Findings from a retrospective cohort study in India. *Contraception*,

99(4), 212–216. https://doi.org/p

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Retrospective Cohort	673 of the women had	Strengths:
To evaluate use of		PPIUD placement,	Large sample size with
immediate	Telephone survey at one year	62% reported	good follow-up
postpartum	postpartum to determine IUD	continued use, 7.5%	
CuIUD use at one	use, symptoms, and	reported expulsion,	Limitations:
year	alternative contraception	19.3% removal for	-Only one type of IUD
		menorrhagia. 50% did	used (CuIUD)
Sample/Setting:		not switch to a	-Population
673 randomly		different method.	homogeneous.
selected women in			
India		Conclusion:	
		Use at one year was	
Level of		62%. Reason for non-	
evidence:		use at one year was	
III		more related to side	
		effects like bleeding	
Quality of		than expulsion.	
evidence:			
High			

Author Recommendations: Future studies need to focus on the lack of having an alternative method of contraception.

Implications: Expulsion was low. Because removal was often for CuIUD known side effects, results may be different with an LNG-IUS

Source: Laporte, M., Marangoni, M., Surita, F., Juliato, C. T., Miadaira, M., & Bahamondes, L. (2020). Postplacental placement of intrauterine devices: A randomized clinical trial. *Contraception*, 101(3), 153–158. https://doi.org/10.1016/j.contraception.2019.12.006

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Randomized controlled trial	22/60 (36.7%) expelled	Strengths:
To compare the		copper IUD. 12/60	-Sample randomization
use of CuIUD	140 women were enrolled to	(20%) expelled LNG-	-Ultrasonography
versus LNG-IUS	receive a postplacental IUD	IUS ($p = 0.12$). Higher	allowed for more
at 90 days when	placement (half LNG-IUS,	expulsion in vaginal	complete assessment
placed	half TCu380A) regardless of	delivery and women on	-Good sample retention
postplacentally.	method of delivery. Women	their third or greater	Limitations:
	were randomized into type of	birth. 33/34 (97%)	-Imbalanced parity and
Sample/Setting:	IUD received. Follow-up was	expulsions occurred by	age
140 women, 70	performed for verification of	the 42 day visit.	No continuous
LNG-IUS and 70	placement at 42 and 90 days		surveillance to
Copper IUD	post birth.	Conclusion:	ascertain the exact time
received		PPIUD expulsion was	of expulsion (just <6
postplacental IUD		higher in copper	weeks postpartum).
placement in		CuIUD use, vaginal	-Short follow-up
Brazil		delivery, and women	timeframe
		with three or more	
Level of		deliveries. Nearly all	
evidence:		occurred in the first six	
Level I		weeks postpartum.	
Quality of			
evidence:			
High			
-			

Author Recommendations: Recommendations include future studies to focus on type of device, delivery, and technique for more trending. Additionally, in practice because most of the expulsions were in the first six weeks postpartum, particular care to surveilling for expulsion should be taken during this time to prevent unwanted pregnancy or other complications.

Implications: LNG-IUS systems may be a more effective device for PPIUD insertion than Cu devices. Additionally, most expulsion occurred in the first 6 weeks postpartum.

Source: Moniz, M. H., Dalton, V. K., Davis, M. M., Forman, J., Iott, B., Landgraf, J., & Chang, T. (2015). Characterization of medicaid policy for immediate postpartum contraception. *Contraception*, 92(6), 523–531. https://doi.org/10.1016/j.contraception.2015.09.014

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Qualitative Study	15 states covered	Strengths:
Identify which		PPIUD; 9 considering	Direct communication
states offer PPIUD	Telephone interviews with 40	PPIUD coverage; 16	with policy making
reimbursement	representatives of Medicaid	not considering	agencies.
and potential	agencies to determine trends	coverage. States	
barriers to PPIUD	in reimbursement and policy	providing coverage	Limitations:
	barriers	stated improving	-Not all states in the
Sample/Setting:		overall maternal and	United States elected to
Representatives		child health as well as	participate. 20%
from 40 Medicaid		overall cost savings as	missing.
agencies		reason. States	-Reimbursement is
		declining to cover	only one layer of the
Level of		stated lack of advocacy	barriers that exist with
evidence:		from community	PPIUD.
III		providers and	
		immediate budget	
Quality of		constraints to be the	
evidence:		rationale for not	
Good		covering.	
		Conclusion:	
		Many states provide	
		Medicaid coverage of	
		immediate PP LARC.	
		Misinformation about	
		clinical effects and	
		cost-effectiveness	
		promote moving to	
		PPIUD insertion.	

Author Recommendations: Addressing misinformation about PPIUD insertion and recognizing long-term cost savings are ways to eliminate barriers from PPIUD insertion.

Implications: 15 states in the US cover PPIUD insertion at the time of birth. Of those that don't, misinformation, initial cost, and lack of provider desire are the common reasons for omitting this option.

Source: Moniz, M. H., Roosevelt, L., Crissman, H. P., Kobernik, E. K., Dalton, V. K., Heisler, M. H., & Low, L. (2017). Immediate postpartum contraception: A survey needs assessment of a national sample of midwives. *Journal of Midwifery & Women's Health*, 62(5), 538–544.

https://doi.org/10.1111/jmwh.12653

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Qualitative Survey Study	10% felt comfortable	Strengths:
To determine		placing a PPIUD; 64%	Large scale assessment
CNM and CM	Online survey discussing	wished to have training	of barriers, anonymous,
perceptions on	barriers of PPIUD, current	on method; 20%	accessible survey
PPIUD barriers,	practice, knowledge deficit,	reported access to this	
knowledge, and	and desires for further	training; 41% reported	Limitations:
current practice	training.	barrier is not standard	-Low response rate
		practice; 27% stated	-Self-reporting
Sample/Setting:		not available; 27%	-May not be accurately
4609 CM and		stated inadequate skill;	able to translate to
CNM invited to		16.4% were concerned	larger??
survey with a 794		about reimbursement;	
(17%) rate of		8.4% concerned about	
response; 99%		perforation or	
female; 92%		expulsion.	
white; 45%		Conclusion:	
practicing in an		90% of midwives	
urban setting		reported not feeling	
		comfortable with	
Level of		PPIUD insertion but	
evidence:		64% would like to	
Level III		learn more; there is a	
		significant education	
Quality of		gap.	
evidence:			
High			

Author Recommendations:

This study identified a need to assess for didactic and skill training as well as a need to evaluate barriers in depth such as facility inability to stock IUD for placement and social bias against placement.

Implications: Common barriers such as lack of training, lack of availability, reimbursement concerns, and misunderstanding of complication risks were identified by a large sample of midwives, highlighting the need for didactic training on the subject.

Source: Shukla, M., Qureshi, S., & Chandrawati. (2012). Post-placental intrauterine device insertion-a five year experience at a tertiary care centre in north India. *Indian Journal of Medical Research*, 136(3), 432–435.

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Prospective cohort study	1317 women had IUD	Strengths:
To determine the		placed postplacentally.	-Large sample size
long-term safety	CuIUD was inserted within	280 did not return for	Adequate follow-up at
and efficacy of	ten minutes of placental	follow-up. Expulsion	least the 6 week visit
PPIUD insertion	delivery. Follow-up with	rate at 6 months was	
	physical exam and survey at	10.68%. 0%	Limitations:
Sample/Setting:	6 weeks and 6 months	perforation. 0% PID	-Loss to follow-up at 6
1317 women in a	postpartum.		months (22%)
north Indian		Conclusion:	-No follow-up past six
tertiary care center		PPIUD insertion is safe	months.
		and effective;	-Only CuIUD
Level of		particularly in those at	evaluated.
evidence:		risk for loss from	
III		postpartum care.	
Quality of			
evidence:			
High			
-			

Author Recommendations: Future research should include larger scale study, following patients for one year or greater to determine efficacy.

Source: Soon, R., McGuire, K., Salcedo, J., & Kaneshiro, B. (2018). Immediate versus delayed insertion of the levonorgestrel intrauterine device in postpartum adolescents: A randomized pilot study. *Hawaii Journal of Medicine and Public Health*, 77(3), 60–65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845021/

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose: To	Randomized Control Trial	All 6 postplacental	Strengths:
evaluate the	11 adolescents were	placements occurred.	-Randomization
feasibility of a	randomized into immediate	At six weeks 2 of the 5	-No infrastructure
larger scale study	postplacental IUD insertion	postpartum IUDs	concerns
evaluating	within 10 minutes of placenta	occurred because of	
adolescents using	(using hand to fundus or ring	loss to follow-up,	Limitations:
IUD at 6 months	forceps) or 6-8 weeks	pregnancy, or no	-Pilot study with a
when placed	postpartum IUD placement.	longer desiring IUD.	small sample size and
postplacental vs.	Follow-up was at 6 weeks	At 6 months, 4/6	the population was
postpartum	postpartum, 10 weeks	postplacental IUDs	limited to adolescents.
	postpartum, and 6 months	remained with one	-Poor recruitment and
Sample/Setting:	postpartum. Evaluation	non-replacement and	retention
11 adolescents; 6	included pain, bleeding,	one falling out of	
receiving	satisfaction, and rate of IUD	study. 0 of the 5	
postplacental IUD	use.	postpartum placements	
and 5 receiving		had IUD remaining in	
postpartum IUD		place, 2 were pregnant,	
		2 were unable to be	
Level of		reached. (66% v 0%))	
evidence:		80% of PPIUD	
Level II		preferred this	
		placement time	
Quality of		Conclusion:	
evidence:		Postplacental IUD	
Good		placement may be a	
		superior way to capture	
		women for desired	
		contraception than	
1		traditional postpartum	
	adationas A laurau saala studu sl	timing	

Author Recommendations: A larger scale study should be performed in a facility that can capture an adequate population size.

Implications: Postplacental IUD placement may be a more effective way to capture women for placement of LARC and shorten IPI compared to traditional postpartum placement timelines. Women are more likely to participate in postpartum follow-up with a device in place at the time of birth and are less likely to be pregnant or without contraception at six months postpartum than those that receive IUD at the time of the traditional postpartum visit.

Source: Sucak, A., Ozcan, S., Çelen, Ş., Çağlar, T., Göksu, G., & Danışman, N. (2015). Immediate postplacental insertion of a copper intrauterine device: A pilot study to evaluate expulsion rate by mode of delivery. *BMC Pregnancy and Childbirth*, *15*(1). https://doi.org/10.1186/s12884-015-0637-6

Purpose/Sample	Design	Results	Strengths/Limitations
Turpose/Sumple	(Method/Instruments)	Ttosuits	
Purpose:	Prospective Cohort Study	At 6 and 12 months,	Strengths: This is the
To look at	, , ,	vaginal delivery	first time controlled
expulsion risk	160 total women had	experienced an 11.3%	trial has exhibited labor
with PPIUD	CuPPIUD placed. within 10	expulsion rate (no	not having a negative
insertion	minutes postpartum. Follow	expulsion after 6	correlation with
	up was performed at 6 weeks,	months), unlaboring	expulsion.
Sample/Setting:	6 months, and 12 months to	cesarean 6.5% at six	
160 pregnant	determine continued use and	months and 8.7% at 12	Limitations:
women in Ankara,	satisfaction of use.	months. Laboring	-Smaller sample size
Turkey.		cesarean 8.9% at 6 and	
		12 months (p => 0.05	
Level of		in all comparisons).	
evidence:		Multiparity had a	
I		twofold increase in	
		expulsion.	
Quality of			
evidence:		Conclusion:	
High		Rates of expulsion	
		were similar and the	
		only independent	
		factor in expulsion was	
		parity.	

Author Recommendations: Larger studies needed to determine the effect of parity and labor on expulsion with PPIUD.

Implications: Parity and provider technique may have less to do with expulsion than laboring PPIUD placement.

Source: Whitaker, A. K., Endres, L. K., Mistretta, S. Q., & Gilliam, M. L. (2014). Postplacental insertion of the levonorgestrel intrauterine device after cesarean delivery vs. delayed insertion: A randomized controlled trial. *Contraception*, 89(6), 534–539.

https://doi.org/10.1016/j.contraception.2013.12.007

Purpose/Sample	Design	Results	Strengths/Limitations
	(Method/Instruments)		
Purpose:	Randomized controlled trial	Rate of use was 60% at	Strengths:
To compare rate		twelve months in the	Underestimation of
of use of LNG-	The two randomized arms	postplacental group	return to care at 6
IUS when placed	were immediate $(n = 20)$ vs.	and 40% in the interval	weeks may have much
postplacentally	delayed (n = 22) postpartum	placement group.	to do with the
compared to the	IUD insertion. Follow-up	Rate of expulsion was	population being one
traditional interval	assessments with telephone	20% in the PPIUD	that would most benefit
placement of 4-8	surveys performed at 3, 6,	group vs 0% in the	from placement
weeks post birth	and 12 months including	interval group $(p = .01)$	
	satisfaction and rate of		Limitations:
Sample/Setting:	expulsion and continued use.	Conclusion:	-Poor sample retention
42 women.		Higher expulsion	rate at 33.3% in both
Two urban		postplacentally but	groups.
medical centers in		similar use at 12	-Study was halted early
Chicago.		months, Insufficient	due to slow enrollment.
		sample size to power	
Level of		for statistical	
evidence:		difference	
Ι			
Quality of			
evidence:			
Low			

Author Recommendations: Future studies needed with better ability to reach a definitive conclusion through enhanced retention.

Implications: While this study was unable to power for statistical differences, the higher than expected return for care for IUD placement may suggest the desire of these at-risk populations to have access to contraception with the two visit IUD practice limiting access to obtaining family planning.