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Summary

Many conventional rectangular baking pans have a problem in that they bake the corners of the 
batter faster than the rest of the pan. Circular baking pans eliminate this problem, but take up 

more space in the oven. We propose a solution that given weights for baking consistency and space 
efficiency based on the importance of each will provide the optimal baking pan shape. We have come 
up with an algorithm for sorting the pans of area A effectively and formed a model that describes the 
heat flow into the pan as well as the baking mix itself. The model we developed was based off real-life 
data that we gathered by baking brownies using careful measurement. We determined several physical 
properties, such as specific heat, density, and heat transfer coefficients for brownies directly through 
experimentation. We compared our results with previous studies on the properties of cake-like foods and 
found that they were similar. Then we ran the model using these coefficients and a variety of different 
plausible baking parameters, including temperature and baking time.
	 We also developed a technique for optimally arranging polygonal shaped pans in the oven for any 
length- to-width ratio to maximize the number of pans that can fit. For polygons, we considered both 
lattice arrangements and where applicable, tessellating patterns. The algorithm for packing also takes 
into account the need for airflow between the pans for overall even cooking, which means that the pans 
are not packed directly next to each other causing uneven heating on the pans located near the sides of 
the oven. The overall efficiency of a pan shape was calculated using the following equation (where p is a 
weighting factor):

Efftotal = p · Effspace + (1 − p) · Effheating

	 Using the algorithm, we found that the type of polygon needed to efficiently use the oven space 
while heating the pan perimeter was greatly dependent on the dimensions of the oven for weighting 
values between 0.2-1.0. (Below 0.2, the circular pan is very heavily favored regardless of the oven 
dimensions.) We also found that adding or subtracting a little bit from the width or length of the oven 
can have a drastic effect on the spacing efficiency ratio. When we have maximally high efficiency, we call 
the width and length of the pan “magic numbers.”
	 For example, if the oven dimensions (width by length) are 30” x 40”, with two racks, if the area of 
a pan is set to be 81 in2, and if space efficiency and baking consistency are given equal weight, we found 
that the optimal shape is a octagon. Our algorithm is able to compute the optimal shape for any width, 
length, pan area, and weighting factors using a variety of baking parameters.

Cooking Up the Optimal
Baking Algorithm

Tony Burand, Michael Tetzlaff, and Jacob Smith
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Introduction to Problem

	 The problem we chose to solve was how to create the best brownie pan with edges that are heated 
evenly while fitting as many pans as possible on a rack. Obviously a square is most efficient in terms of 
space, but is found lacking in heating efficiency because the corners are likely to be burnt in comparison 
with the rest of the edges. A circle shaped pan solves this problem, but is not as efficient space-wise. If 
we assume each pan has a set area of A, we can optimize what shape will work best in a oven that has a 
width-length ratio of W/L.

Assumptions and Parameters

Assumptions and Justifications
	 In the problem we made some assumptions; they are as follows:
	 1. The oven has only two racks, which are evenly spaced.
	 2. The oven is pre-heated to the desired temperature when the brownies are placed in the oven. 

This ensures that the oven temperature is constant in our model, and does not “ramp up” during 
the beginning of the cooking.

	 3. The oven can be considered a heat reservoir in comparison to any batch of brownies. An oven 
should be insulated and should not lose significant heat as it is designed to stay at a stable 
temperature.

	 4. The pan heats up to the oven temperature fast and maintains its temperature, so for the brownie 
batter, it can be considered a heat reservoir at the same temperature as the oven.

	 5. In relation to the brownie, the pan is the primary heating agent. This is especially true around 
the edges where the air is in contact minimally with the surface area of the edge. The hot air 
above the brownie pan is a secondary heating agent which we will incorporate into our model as 
well.

	 6. The bottom of any pan is flat, and no pans under 36 square inches will appear in our oven. Flat 
pans will provide more brownies and will be easier to store. Anything smaller than 6”x6” will be 
an inefficient use of time and will be a hassle when baking.

	 7. We also assume that the baker will rotate the racks when cooking in order to cook each batch 
evenly. Each individual oven has its own hot-spots, and it is up to each baker to figure them out 
and cook accordingly to his tools.

	 8. The mass, density and volume taken up by the brownies are constant. This in reality is not usually 
the case, but the expansion is generally vertical, and should therefore not impact the horizontal 
heat distribution. Additionally, the change in density, while noticeable, is not significant enough 	
to be worth incorporating into our model.

	 9. The consistency of the brownies is uniform, and does not change significantly as the brownies are 
baked. In particular, this means that we are not accounting for the evaporation of water for the 
brownies. Again, this is not usually true, but for our purposes, we are trying to measure the 
total amount of heat absorbed, and this is easier to do if we assume the consistency does not 
change over time. After all, the goal is to ensure that the brownies are evenly cooked, and 
brownies that get dried out because of water evaporation are just as much of a concern as 
brownies that are over- or under-heated.

Parameters
	 The first step towards building our model was setting up some parameters. We knew that the area 
of the pan (of any shape) had an area of A. The oven itself was rectangular and had a width-length ratio 
of W/L. There was also a weighting criteria p and 1 − p, where 0 ≤ p ≤ 1. The number p “grades” the 
importance of the space maximization so that if p = 1, we only care about how many brownies we cook 
and not about how well we cook them. If p = 0 then the even cooking of brownies is the priority.



 9

	 Since our focus was on regular polygons, we also examined the parameter n for the number of sides 
of a regular polygon. In this study, the apothem, denoted a, and the radius, denoted r are important. The 
angles of the corners of the polygon, are denoted as θ. Our goal is to use as much of the oven area, W · L, 
with a pan of area A having n sides, while still cooking the edges efficiently.
	 The heating model itself has several parameters. One aspect of the model, which we will go into 
more detail later, is the geometry of the pan, which has several parameters, like the number of sides and 
the area. We also needed physical properties of the brownie batter, the pan, and the air in the oven to 
use in our model. These parameters were density, ρ, specific heat, c, and thermal conductivity, k of the 
brownie batter. There were also two heat transfer coefficients: one between the pan and the batter, and 
one between the batter and the hot air in the oven.
	 Finally there are various baking parameters, such as the temperature of the oven, the initial “room 
temperature” of the batter, and the length of time the brownies are to be cooked, which we needed to 
considered.

Analysis of the Problem

Hypotheses
	 We came up with a few different hypotheses for how to optimize heating and space efficiency 
individually. First of all, we knew that shapes that had fewer sides would be the most efficient at using 
area. Squares and regular hexagons are unique in this category because they can tessellate (triangles were 
not considered due to poor corner heating). However, perfect space efficiency means no heat flow and 
poor cooking of the brownie, so we would need to space out these tessellation patterns. We hypothesized 
that using a lattice layout for the shapes would be the most efficient packing pattern.
	 Our other hypothesis was that since circles are the most efficient at even heating, shapes with 
many sides would also be better than a square at heating the edges evenly. Thus, we believe that either a 
hexagon or an octagon will give us the best shape overall if each criteria is weighed evenly.

The Model

We divided our model into two main components: packing and heating.

Space Optimization
	 The algorithm for spatial optimization utilized lattice packing as shown in Figure 1 and a 
tessellating pattern for certain cases with squares and hexagons as shown in Figure 2. The code for the 
algorithm is shown in the appendix. Regular polygons with multiple of two sides were used for two main 
reasons. First, regular polygons can be packed into regular patterns that allow for more efficient use of 
oven space. The other reason for using regular polygons is that a square will pack more efficiently than 
a circle, but the square has worse heat distribution. However, as more sides are added to the polygon, it 
comes closer to becoming a circle which means that some of the properties of efficient polygon lattice 
packing can be obtained, along with more even heating for higher n-sided polygons. The lattice packing 
was incorporated into the packing strategy for a couple of reasons. Most importantly, since we are 
assuming a rectangular shaped oven, most of the time the lattice packing procedure will be most efficient, 
and the cases where it is not can be handled with the tessellating packing strategy. Additionally, without 
airflow between the pans, the pans towards the sides of the oven will heat up faster than the ones in the 
middle of the oven. It was important that our packing strategy took into account the need for regular 
spaces between the pans.
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Figure 1: Lattice pattern for octagons.

Figure 2: Tessellating patterns for squares and hexagons

	 The lattice packing algorithm calculates twice the apothem for regular polygons with multiple of 
4 sides (with the exception of squares) and then checks to see how many polygons could be fit into a 
particular length and width shaped oven. For even sided polygons that do not have multiple of 4 sides, 
the algorithm calculates twice the radius and twice the apothem to get the dimensions of the rectangle 
they would inscribe, and then the algorithm calculates how many would fit in the oven. One thing to 
note is that for the case of even non-multiple-of-4 sided polygons, the algorithm checks both possible 
orientations of the polygons in the oven, one with the parallel sides of the polygons spanning the width 
of the oven and the other with the parallel sides spanning the length. This was done to ensure that the 
maximum number of polygons could be fit into the lattice structured layout. For squares, our algorithm 
needed to account for there being no natural spaces between adjacent squares. To accomplish this, 
when the maximum number of squares that could fit in the oven was calculated, the area of the square 
was inflated by 8%. This meant that while the squares had area A, for finding the maximum number 
of squares that would fit in the oven, the area used in Equation 1 was 1.08A, where N is the number of 
polygons that can be fit on the oven rack.

(1) Effspace =                  d
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	 This allowed for there to be space between the squares when they were put into the oven to ensure 
airflow between the baking pans. For hexagons, a tessellating algorithm was used to check if the lattice 
packing method was the most efficient. With the hexagonal tessellation seen in Figure 2 the algorithm 
again had to account for the need for space between the hexagons for airflow considerations. Thus, for 
the purpose of calculating how many shapes could fit in the oven, the area of the shape was increased 
to 1.08A. This algorithm also checked to see if orienting the tessellation along the width or length of the 
oven would fit more hexagons. The tessellating orientation was not tried for shapes with higher number 
of sides because after octagons, the higher order polygons become close enough to circles that the lattice 
packing method is the more efficient for packing.

Figure 3: Diagram showing the side length (S), apothem (r), and Radius (R) of a regular polygon.

Heating of Polygons
	 There are two primary equations governing our heating model. The first is Newton’s Law of Heating 
and Cooling, which governs the rate at which the brownie batter is heated in the pan. The second is the 
diffusion equation, which governs the rate at which the heat diffuses throughout the batter. Since the 
system is too difficult to solve analytically, we will do a numerical approximation of the system. We stored 
the temperatures at various evenly spaced points in the pan and ran a simulation to calculate how the 
temperatures at various points change over time. The diffusion equation is straightforward, and we use a 
standard forward-time, centered-space approximation to simulate its effects. We assumed that the area at 
the edge of the pan was affected most immediately by Newton’s Law, and applied it to the volume within 
some ∆w of the edge of the pan. More precisely, we took all the data points within this ∆w, calculated the 
volume ∆V around each point, and then applied Newton’s Law based on a fraction of the surface area, 
∆A, of the pan bordering this small volume. We do not neglect the heating of the brownies from the air, 
and use Newton’s Law in the same way to simulate the heating of the top of the brownies from the hot air 
in the oven. For a given data point, therefore, the full heating equation is:

 (2)

Determining the surface area of each data point for heating
	 One of the most difficult problems to solve for our heating model was determining how much 
surface area each small volume of brownie batter had with the pan. We initially considered just drawing 
the shape of the pan over a grid and determining how much area fell into each grid space. The problem 
with this approach was that some edge squares only had a little bit of surface area associated with them 
simply because of how the grid fell, not because of any characteristics of the geometry of the pan. Unlike 
most of the pan edge, these squares would fail to rise to the oven temperature when we tested the 
simulation, incorrectly giving an appearance of inconsistent cooking.
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	 Our next approach was to simply average the area over all the edge squares, so that the heat along 
all squares on an edge would be uniformly distributed. However, we realized this would also distribute 
the heat evenly over all the corners, defeating the purpose of the simulation. Our final solution was a 
hybrid of sorts; we distributed the surface area evenly over the edges, but assigned certain data points to 
be “corners,” which were higher than the other points. For a square, the corners were weighted to have 
twice the adjacent surface area as the other edge points. For a circle, there are no corners, so we knew the 
limit of this ratio had to approach one as the number of sides went to infinity. We also knew that what 
fundamentally changes the local surface area at the corners is the angle of each vertex, which can be 
found geometrically:

   (3)

	 What we really needed, then was a formula that evaluated to 2 when θ = π/2 = 90°, and approached 
1 as θ approached π = 180°. Ideally, this formula would also drop off quickly as θ moves away from 90°, 
but would only gradually approach 1 as θ approaches 180°. A formula which meets these requirements is 
as follows:

  (4)  

	 This is the weight that we gave the surface area adjacent to each corner data point, if the surface 
area adjacent to an edge data point was 1. To calculate the actual surface area, we just calculated the total 
surface area of the pan and multiplied every weight by this total surface area divided by the sum of the 
unadjusted weights.

Heating Efficiency Model
	 To determine our heating efficiency, we assigned certain data points to be “corners” (the same ones 
which had the higher surface area), and others to be “edges”. We then measured the average temperature 
over the entire simulation time at the corners, and at the edges. These average temperatures should be 
indicative of the heat energy absorbed per unit volume at different point in the pan. Our efficiency was 
calculated by dividing the average temperature at the edges by the average temperature at the corners. 
This method of calculating efficiency has two convenient properties: if the edges are not heated at all, 
or insignificantly compared to the heat at the corners, then the efficiency will drop to zero. However, 
if the edges and corners are heated evenly, the efficiency will be one. This gives us a good zero-to-one 
normalized scale to compare with our space efficiency.

Final Algorithm for Efficiency
	 Our final algorithm to determine the n-sided polygon that fit in an oven of width W and length 
L used a weighting factor p to weight whether spatial efficiency or even heating efficiency was more 
desired. The equation used for this final algorithm was:

  (5)  						     Efftotal = p · Effspace + (1 − p) · Effheating

Determining Parameters by Experimentation

Procedures
	 As part of this project we needed to determine a few constants for use in the thermodynamic 
models of the pans. Using a standard electric oven, we baked two batches of brownies to determine the 
density, thermal conductivity, specific heat, and heat transfer coefficient for the brownies. We determined 
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these parameters by monitoring the temperature of the brownie mix in a stainless steel pan with a K-Type 
thermocouple. For the first experiment, we made the brownie and measured the initial temperature, 
volume, and mass. During the fifty minute cooking period at 350°C, the temperature at the center and 
1cm from the edge was measured at increments of about 10 minutes. At 20 minutes, the mass and volume 
of the brownie mix was measured. Unfortunately, the thermal measurements required that the oven be 
opened multiple times, which slightly cooled the oven and the pan.
	 After baking, a calorimetry experiment was done using the set up as shown in Figure 4 using 
Styrofoam cups. A small amount of cooked brownie was put into the calorimeter with a set mass of 
water and the water-brownie mix was stirred for 5 minutes until the temperature equilibrated. The 
equation to calculate the specific heat is q = cm∆T . Using the known mass m, specific heat c and change 
in temperature ∆T for the water, the energy released q by the brownie can be calculated. Then based on 
the mass and temperature change for the brownie, the specific heat of brownie can be calculated. The 
calculated specific heat of the brownie was determined to be about 2.0 J/g°C.
	 A second baking experiment was done to monitor the brownies baking in the oven without 
the need to open the oven door to take temperature readings. Three thermocouples were threaded 
through some heat shielded tubing and then placed in the center, midway to the edge, and at the edge 
in the brownie mix. The purpose of this experiment was to get more accurate data for the needed 
thermodynamic parameters. However, the heat from the surroundings of the oven traveled through the 
wires to the thermistor causing inflated temperature measurements. For this reason the data was not used 
to reevaluate the constants obtained from the first experiment.

Figure 4: Setup of calorimetry experiment.

Heat Transfer Coefficient Calculations
	 Figures 5 and 6 show our data from the brownie experiment.

Figure 5: Temperature data as a function of time, measured approximately 2mm under the surface of the
batter, and about 1cm from the edge of an 8” x 8” baking pan. 

Figure 6: Temperature data as a function of time, measured approximately 2mm under the surface of the
batter at the very center of an 8” x 8” baking pan.

	 When inspecting the data gathered from our experiments, we found that at about 104°C the batter 
reached a plateau, and did not rise significantly after that. We hypothesized that this was because at this 
point water started boiling off near the surface and reduced the temperature at the points we measured. 
In order to get an accurate value for the heat transfer coefficient, we threw out the data points where the 
batter had reached 104°C. This left us with three data points near the edge of the pan and four data points 
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in the middle of the pan – not as many data points as would be preferable to minimize error, but enough 
to give us an order-of-magnitude estimate of our coefficients as a starting point.
	 We used the data collected at the edge of the pan to calculate a heat transfer coefficient between the 
pan and the brownie mix. Since the temperature at this point should be dominated by the heat from the 
pan, we can assume for our purposes that our temperature data can be completely accounted for by heat 
transfer from the pan. The differential equation given by Newton’s Law of heating/cooling can be solved 
analytically for temperature.

  (6)

	 The fraction        is the ratio of surface area to volume. Another way of looking at this for a 
square pan is that it is the multiplicative inverse of the depth within the brownie batter for which the 
temperature is a characteristic value. We measured the temperature at a distance of approximately 1 cm 
from the pan edge, so it should be a characteristic of the temperature in the region extending up to 2 cm 
from the edge. We will therefore use 50.0 m−1 as the value of        to calculate the heat transfer coefficient 
between the pan and the brownies.
	 Finally, we know the room temperature, the pan temperature, and we have already calculated the 
specific heat of brownie batter and measured the mass of the batter. After performing a least squares fit 
on our data using these coefficients and the equation above, we found that the heat transfer coefficient 
between the pan and the brownies is approximately              .
	 We use a similar method to measure the heat transfer coefficient between the brownies and the air 
in the oven. For this we use the data collected in the center of the pan. Since this point is farthest from 
any of the edges of the pan, it is dominated by heat from the hot air above the pan. However, in this case, 
      is the multiplicative inverse of the depth of the measurement region under the surface. Since the 
distance of the probe under the surface was approximately 2 mm, the depth of the effective measurement 
region is 4mm, and    is 250.0 m−1 All other parameters are the same as before, including the 
temperature, since we assumed that the oven and the pan are both the same temperature. Once again, 
we did a least squares fit and found that heat transfer coefficient between the brownies and the air is 
approximately 

Mass, Volume, and Density
	 During the course of our experiments, we measured the mass and volume before, during, and after 
the baking process. Using mass and volume, we were able to also compute density. We found that the 
density of the uncooked batter was 1040kg/m3, but dropped to 840kg/m3 after 20 minutes of baking. The 
density did not drop significantly more between the 20 minute mark and the end of the 50 minute baking 
process.
	 In order to measure the density, we also had to measure the mass. We found that the batter lost 
some mass over the entire course of the baking process, roughly linearly with respect to time. The 
uncooked batter initially weighed 1.112 kg. After 20 minutes it dropped to 1.082 kg. By the end of the 
baking process the total mass was 1.038 kg. We believe that this loss of mass was due to water evaporating 
off the surface. Thus, some of the change in density was due to the loss of mass, but most was due to the 
rising of the brownies.
	 Although we found that the mass, volume, and density changed over time, we ultimately chose to 
keep these as constants in our model. This made the code simpler, and since we did not have time to take 
enough measurements to ensure that the relationships were, in fact, linear, we thought it would be better 
to just keep them as constants.

Comparison with previous studies
	 Baik et.al studied the properties of cupcakes and, like our study, measured their density and specific 
heat, and additionally determined their thermal conductivity, which we were not able to measure.[1] 
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While cupcakes can have a slightly different consistency than brownies, they are close enough to verify 
that our figures are on the right order of magnitude and the thermal conductivity should be a good order-
of-magnitude starting point, so that we could calculate a thermal diffusivity for the batter. Baik et. al 
found that the density of uncooked batter was 803 kg/m3, and dropped to 236 kg/m3 after the batter was 
cooked. This is a lower density than we measured, and it dropped even more, but this is not unreasonable 
considering that cupcakes are generally less dense than brownies. They measured that the specific heat 
varied over the baking period from 2516 J/kg°C to 2658 J/kg°C, but stayed relatively constant. This is 
fairly consistent with our measured value of specific heat, 2000 J/kg°C, which was a bit lower. Finally, 
they measured that thermal conductivity varied between 0.1064-0.2064 W/mK We started with thermal 
conductivities in these ranges, but found that to get results more like what we expected, a slightly larger 
thermal conductivity in the range of 0.3-0.4 W/mK was necessary.

Reduction of physical constants to algorithm parameters
	 In our algorithm we simplified the code by reducing the number of parameters. For diffusion, the 
fraction       can be reduced to a single constant α. We found that the value of α that worked the best was 
18.0×10−8m2/s, which was consistent with the order of magnitude of the parameters that we measured.
	 Similarly, for heating from the pan and the air, the fraction h/cρ can be reduced to a single 
parameter which we called β for the pan to brownie heat transfer, and γ for the air to brownie heat 
transfer. We calculated the parameters as follows:

   (7)

    (8)

Results

	 As we assumed, there was no one ideal shape to our model. Every optimal shaped hinged on the 
dimensions of the pan, the weighting factor, and the desired area of the pan. When we ran our algorithm, 
no one shape dominated every situation. Typically, for lower values of p, the circle dominated, but as p 
approached 1, the square was most efficient in just as many situations as the circle, followed closely by the 
hexagon. In general, to determine which shape would be most efficient space-wise we must take “magic 
numbers” into account.

Magic Numbers
	 Magic numbers are the dimensions of the pan, W by L, that provide a local maximum in terms of 
spacing efficiency. For a regular polygon with the number of sides being a multiple of four, the formula 
for a magic number would be:

W = L = 2 · apothem[n] · k (where k is a natural number)

	 This means a W/L ratio of one would be ideal for these types of shapes. This is because these 
polygons have a length and width equal to the length of two of their apothems. It follows that the width 
and length of the pan should be an integer multiple in order to maximize efficiency. If these dimensions 
were slightly less than an integer multiple, we would be unable to fit another row or column in the pan, 
thus creating a lot of unused space. This is why we call the dimensions magic numbers. It is because they 
are the most optimal local dimensions.
	 For a polygon that has an even number of sides but is not divisible by four, the formula is a little 
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different. Without loss of generality, if r is the apothem and R is the radius:
   (9) 								       W=2·r·j
  (10)								       L=2·R·k
where j, k are a natural numbers. These types of polygons are different because they are stacked side to 
side and corner to corner. The length from opposite corners is longer than the length from opposite sides, 
so that is why these have a different equation for magic numbers.

Optimization
	 In order to get the overall efficiency, we must use the equation

  (11)

	 To be clear, N is the number of shapes of area A that we can fit into a W by L pan. It is natural to 
make the assumption that the percentage of area used would be a good grading scale for efficiency in 
area. It has the bounds from zero to one and has a wide range of values.
	 The fraction          is the ratio between the area on the edge that absorbed the least heat compared 
to the area on the edge that absorbed the most heat. We define this to be our grading criteria for heating 
because it fits in the range from zero to one, and will directly compare how evenly the sides will be 
heated.
	 Again, p is the weighting factor. The equation for efficiency has a maximum value of one, but no 
shape will satisfy that number. Hence we designed an algorithm that takes in the previous inputs and 
outputs the most efficient shape. We have a packing algorithm that determines how many of one shape 
can fit inside an area, and we use a least-squares estimation to find an equation that approximates the 
data we get from our heating model. Using these two things, we multiply by the weights, and whichever 
shape has the highest efficiency is the one we determine is the best shape for the above conditions.

Optimal Shapes
	 After fitting our heat model to an equation, we optimized space and heating with a variety of pan 
areas with different weights. We tallied the number of “hits” for each pan shape over all pan areas tested 
for a given choice of weights and obtained the following results:

Figure 7: Table of tallies for different shapes over all tested pan areas.

	 While it appears that a circle seems to win most of the time, for certain areas this may not be the 
case.
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Efficiency
	 Finally, we see that no one shape can dominate over every circumstance. The optimal shape 
depends on the parameters given. Overall, the three most efficient shapes under our optimization 
methods are the circle, square, and hexagon. Should our goal be to mass produce, we would want to 
have circular pans be our product. Otherwise tailoring our product to what the consumer desired would 
be ideal, as we could charge more for custom products. As far as producing the optimal shaped pan, it 
depends on the situation. However, given the situation we can always find the best pan for it.

Error/Sensitivity Analysis

Since we have had an experiment as part of our paper, one must wonder: how accurate are our physical 
constants? In all likelihood they are subject to error, and we must know how much could we tweak these 
constants before our model becomes void. Let us make a list of what these parameters are:
	 • Our three physical constants α, β, and γ
	 • The maximum temperature of the pan
	 • The height of the brownies being cooked
	 • The time we cook the brownies
	 • The area of the brownies
	 • The shape (number of sides) of the brownie pans
	 Varying the temperature in the pan did not vary our results significantly. Our standard temperature 
was 200°C and the range of values we tested were from 100°C to 300°C, which were well beyond the 
standard normal baking temperatures. In this we discovered that the lower the temperature, the higher
the efficiency. Over all the shapes we considered, there was a 3% difference between the efficiency of two 
temperature extremes in the worst case. Since we are dealing with efficiency ratios of > 80%, 3% cannot 
be ignored. However, the efficiency difference between the standard (200°C) and our 300°C is about 
0.7% in the worst case which is significantly better than the difference between 300°C and 100°C. Since 
we are reaching equilibrium quicker with the higher temperature, we can say that using our standard 
temperature is an accurate source of data.
	 Next on the list is the variance of height in the brownie. We should expect that since we are 
evaluating the middle layer of the brownie, raising the height will take away from the contributions of the 
bottom of the pan and the top layer of air, making it more accurate as the height increases. Our standard 
height was about 1.5 inches, or 0.04 meters. Lowering height raises efficiency, but that is because we 
need to take into account the heat from the bottom and top of pan, making our efficiency rating more 
inaccurate. The difference in efficiency between 1 inch and 6 inches for height was a significant 5.5%, 
with around a 3% each way. Even if we go up to 2 inches our efficiency ratio decreases by 1.3%. Further 
analysis would tell us the ideal height to measure at.
	 Now it is time to evaluate the baking time. As we might expect, if we lower the baking time the 
efficiency ratio decreases since there is not enough time for the middle to be heated up. If we run it too 
long however, every brownie reaches the saturation temperature and all efficiencies will be 1. We chose 
the middle ground of 30 minutes as our standard, which is not too different from normal baking time, 
considering the temperature we chose. Varying the time to 50 minutes we get about a 5% difference, and 
lowering it 25 minutes has the same effect. As far as any sources of error, this was perhaps our greatest 
contribution. Choosing a standard was hard, but we needed some sort of compromise between too long 
and too short and 30 minutes fit the bill.
	 As far as area goes, we were pretty consistent and had little error when modeling this. Since we 
naturally checked many areas, we can see that as area increases, the ratio of heat efficiency decreased 
proportional to the inverse of the root of the area. Since we checked pans about half the assumed area 
minimum and the equation still fit, we need not worry about error changing when we assumed the pan 
size is less than our required minimum size. The same holds true for pans that have a meter of squared 
area. The oven still will heat according to our modeled equation. Little error shows up here.
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	 Considering what this project is asking for, we must see how changing the shape will change our 
heating efficiency. Our model shows what we would expect; a shape with more sides has higher efficiency. 
We define circles to have exactly an efficiency ratio of one, and other shapes we will have the ratio of 
the heating of the middle of a side and the heating of a corner of our shape. From that we see that a 
square will have worse efficiency as far as heating goes, and in general will be no less than 80%, which 
is what is to be expected. Since again we were modeling how well the shapes heat evenly, we came up 
with an equation that would describe the efficiency in heating a shape with n sides and got to about 0.1% 
accuracy. Since modeling is not a problem, little error arises from here as well.

Sensitivity with respect to heating parameters
	 There are essentially four parameters in our heating model: K (the thermal conductivity), hpan 
and hair (the heat transfer coefficients between the brownies and the pan and the air, respectively), and 
finally, the product of specific heat and density, cρ. These last two are one parameter because they only 
appear in the model together, so sensitivity can be performed on their product because any error in one 
individually could be canceled out by equal and opposite error in the other without affecting the model.
	 To test each parameter, tests were run on a range of values for the parameter with all other 
parameters constant. Our standard was to bake the brownies at 200°C for 30 minutes in a 40cm x 40cm 
pan with batter 4 cm deep. Our grid was 21 units in each horizontal direction and 10 units vertically, and 
we used 180 time steps to complete the simulation. We ran the test for even-sided polygons between 4 
and 20 sides.
	 We varied α, the total thermal diffusivity, between 1.8 × 10−9 and 1.8 × 10−7. This is equivalent to 
varying the thermal conductivity, K, while keeping specific heat and density constant. At diffusivity 
values higher than 1.8 × 10−7, the diffusivity was too high for the number of time steps, and the model 
failed to converge. We found that the efficiencies generally increased as α increased, but they did not 
change very much, and the overall shape of the graph tended to stay the same. The maximum difference 
in efficiency over these difference of two orders of magnitude in α was 4%. This is relatively insignificant 
considering how much we changed α by. Therefore, even if our value for α was off by an entire order of 
magnitude, we would not expect that it would change our results significantly.

Figure 8: Efficiency of various shapes with different values for α. 

We allowed β, defined as           , to vary between 2.5 × 10−7 and 2.5 × 10−4. Similar to α, we found that 
for values higher than 2.5 × 10−4 the system heated too fast in one time step and the algorithm did not 
converge. We found that the system did not heat significantly when β was less than 1.0 × 10−5, so we 
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threw those data point out. For other β values, higher β tended to result in higher efficiencies. Unlike 
α, though, the shape did change; when the batter heated faster, it tended to also reach equilibrium at 
the edges faster, and therefore the temperatures were generally more consistent there. The maximum 
difference in efficiency was 16% over just above one order of magnitude. However, in real life, if β was 
indeed higher, a baker would probably not cook the brownies for as long, so as not to burn them. With a 
shorter cooking time, there probably would be a more noticeable difference between the corners and the 
edges for higher β values.

Figure 9: Efficiency of various shapes with different values for β. 

Finally, we allowed γ, defined as          , to vary between 4.0 × 10−8 and 4.0 × 10−4. As with β, increasing 
γ tended to increase the efficiency slightly. However, even over this large range, it did not affect our 
efficiencies significantly at all; the maximum different in efficiency was 3.5%. This is because the heating 
from the air is secondary to the heating from the pan and primarily affects just the batter right on the 
surface. Therefore we can conclude that our results are not particularly sensitive with respect to γ.

Figure 10: Efficiency of various shapes with different values for γ.
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One last test that we ran was to vary all three equally. Since all three have cρ in the denominator, this is 
equivalent to varying cρ while keeping K, hpan, and hair constant. This not only had a significant impact 
on the efficiency, but also on the temperature. More than doubling cρ had the effect that the batter was 
hardly baked at all, even on the edges. Reducing cρ improved the efficiency dramatically, but more than 
doubling it resulted in heating too fast for the time step we used. Between halving and doubling cρ, we 
observed a maximum efficiency difference of 15%. While this difference is very significant, the difference 
in absolute temperature is more significant. This tells us that we probably have fairly accurate values for c 
and ρ.

Figure 11: Efficiency of various shapes with different values for cρ.

	 In summary, the parameters that likely affected our model the most were the heat transfer 
coefficient between the pan and the brownies, and the combination of specific heat and density of the 
batter. However, we believe that the parameters we chose for these values are fairly accurate because we 
got reasonable temperature values at the end of the simulations when we used reasonable values of the 
other parameters (i.e. baking time and oven temperature).

Analysis of our Model 

Strengths
	 Our heating model is quite robust and is able to generate predictable results over a variety of 
temperatures, baking times, and other parameters. For instance, cooking the batter for a longer period 
of time at a lower temperature results in more even baking than baking for a shorter period of time 
under a higher temperature, as expected. By limiting our shapes to polygons, we were also able to easily 
guarantee that our packing algorithm gives an optimal number of pans for a given shape, area, and oven 
size. Finally, we were able to experimentally determine several of our parameters and compare them 
with previously published results to verify their validity. Moreover, these parameters gave us the most 
reasonable results in our heating model, given reasonable values for other parameters like baking time 
and temperature.

Weaknesses
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	 One weakness of our heat model is that in discretizing the brownie pan, it is possible we still lost 
some distinguishing features of a pan design that might have been noticeable with a finer grid, or even 
a different method of discretizing the space (for instance, a radial method). It is also possible that some 
artifacts could have been added due to our methods as well. Additionally, we were not able to rigorously 
prove that our method of assigning surface areas for the edge and corner data points is scientifically 
accurate. However, most of our results were what we predicted would occur intuitively, so we would 
suggest that improving our methods in these ways would not significantly impact the results we obtained.
	 Another weakness is that we do not account for certain effects that occur at high temperatures, like 
the evaporation of water, the restructuring of the batter molecules, and the resulting changes in mass and 
density. A more refined model could account for these to give more accurate results.
	 Finally, one last weakness is that we only considered regular polygons in our model. With more 
time, we could consider non-regular polygons and various curved shapes like ellipses as well.

Future Improvements
	 Just like any other project, improvements can be made. Perhaps a better scheme for measuring 
efficiency in even heating could be developed. Besides that, we would like to get more accurate 
parameters from our measurements with better equipment. Consensus on the way of standardizing the 
time and temperature to fit real-life brownie making would also be necessary. Convection currents were 
also hard to model, and figuring out how much open area is needed in the lattice diagram would provide 
a better efficiency in spacing for the square and hexagon. One last consideration would be to see how 
radiation from the sides of the oven would heat up our product and find how that would affect our heat 
transfer.

Conclusion

	 We have just presented two models, one for packing polygons and one to model the heating of 
a polygon- shaped pan in a conventional oven. Our packing model was able to efficiently organize 
polygons using tessellating techniques and lattice structures. Our heating model produced reasonable 
results and gave us efficiency ratings for various shapes, areas, and baking parameters. Finally, all this was 
based on experimental data that we performed by baking brownies, taking measurements, and fitting 
them to our model. The best overall shape depends strongly on the parameters given; there is no optimal 
shape. Instead, for a given application our algorithm should simply be run to determine the best shape 
for the circumstances. For every customer there is one optimal pan, but there is no one optimal pan for 
every customer.
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