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Increased power and detuning of diode lasers for magneto-optical trap of lithium

Jami Johnson∗

Bethel University

3900 Bethel Dr, St. Paul, MN, 55112

(Dated: December 15, 2010)

Precision experiments such as laser cooling and trapping using diode laser systems are increasingly
prevalent in the fields of modern atomic, molecular and optical physics. Multiple laser diodes of
precise frequencies and significant output power are often needed for such research. Here, a method
for injection locking a slave laser to a master laser stabilized to an atomic line of lithium is described.
The slave laser is a free running diode that is injection-locked by a small portion (2 mW) of the
frequency shifted master laser light. Evidence of incomplete injection locking is described, in addition
to a technique for improving the precision and robustness of the lock. Furthermore, a method for
shifting the frequency of the slave laser in order to produce multiple beams of different detunings,
(from 110 MHz to 406.5 MHz) is demonstrated. This provides the frequency detuned beams of
adequate power (2.5 mW to 4.0 mW) in each beam needed for a magneto-optical trap of lithium
atoms.

PACS numbers: 32.30.Jc, 06.30.Ft, 32.80.Pj, 39.30.+w

Introduction

Atomic, molecular and optical physics has received sig-
nificant recognition in the last few decades. The pri-
mary advances in this field have been made using known
physics to create new and inventive techniques to better
isolate and control the atomic system. This nearly ideal
system is then exploited to achieve higher precision and
discover new physical phenomena [1]. Twenty-one indi-
viduals have been awarded the Nobel Prize in this area
and advances such as the Stern-Gerlach magnet and opti-
cal pumping have allowed preparation and investigation
of internal quantum states. Additionally, quantum states
have been controlled using resonance techniques. Inven-
tions such as the maser and laser have come from this
control of internal states [1].

Laser cooling and trapping has been of particular inter-
est since the late 1970s. The strong forces of electric and
magnetic fields on ions allow ions with high kinetic energy
to be trapped and then cooled in a variety of ways [1]. In
order for trapping to occur, neutral atoms must typically
be cooled below 1 K by radiation pressure. Trapping has
been achieved for cold atoms using field gradients that
act on either the atom’s magnetic moments or induced
electric dipole moments in addition to resonant radiation
pressure. The force that acts on the electric dipole mo-
ment is produced by a tightly focused laser beam that
is near-resonant. These traps and cooling methods have
created the best physical systems yet for precision spec-
troscopy, frequency standards, and tests of fundamental
physics [1].

When an atom scatters a photon, there is a transfer
of momentum, and therefore radiation pressure arises.
When light is tuned just below the atomic resonance fre-
quency, the atoms moving toward the light see the light
Doppler shifted nearer to the resonance, so more pho-
tons will be scattered by the faster atoms than the slower

atoms. The faster atoms are thus slowed down and the
velocity distribution is compressed [1]. One laser beam is
able to cool a sample of trapped atoms or ions, but any
free atoms must be irradiated from all directions. Be-
cause of this, multiple lasers of similar frequencies and
appreciable output power are needed for an experiment
such as a magneto-optical trap (MOT) [1].

Magneto-optical trapping has been demonstrated for
all alkali elements and also some metastable noble gases
and rare earth elements [2]. Of the trappable atoms,
lithium is of particular importance. Lithium is the
most hydrogen-like element, therefore many properties
of lithium can be calculated from first principles. Precise
measurements of fundamental quantities like the Ryd-
berg constant can be made, therefore, as well as pre-
cise determination of atomic properties such as scattering
lengths of the ground state. In addition, 6Li is a fermionic
isotope, and 7Li is a bosonic isotope, both of which natu-
rally occur in high abundances. Because bosonic lithium
is a quantum gas with both repulsive and attractive in-
teractions, experiments relating to quantum-degeneracy
are promising with lithium [2].

Diode Lasers

Diode lasers have been of specific interest for use in
laser cooling and trapping and high-resolution atomic
and molecular spectroscopy. These lasers provide coher-
ent light and have reasonable output power, high elec-
trical to optical efficiency, continuous wavelength tun-
ability and are relatively small and low cost [3]. For
these reasons, they are particularly appealing for atomic
physics. Because, however, these diodes have a large
linewidth (50-100 MHz), and a majority of experiments
need linewidths less than 1MHz, diode lasers have been
manipulated and studied in order to optimize their fre-



2

quency stability and absolute frequency. In many in-
stances, this is done by locking the laser to an atomic
or molecular transition frequency that is well-known [3].
In our experiment, we locked the master diode laser fre-
quency to the 2S 1

2

(F = 2)2 →
2 P 3

2

(F = 2) transition of
7Li.

In order to significantly reduce the bandwidth of a
diode laser, an external or extended cavity that has fre-
quency selecting optical elements is needed. In our work
at Bethel University, both the Littrow [4] and Littman-
Metcalf [5] configurations have been used because of
their simple construction and alignment. We have used
an EagleYard laser diode (EYP-RWE-0670-00703-2000-
SOT02-0000) with a free running wavelength of around
670 nm. The Littman-Metcalf configuration has provided
the best results, because it has allowed for better contin-
uous tuning, stability, and ease in alignment of the out-
put beam. This configuration is shown in FIG. 1. The
alignment of the collimating lens is of particular impor-
tance, therefore, a separate housing with fine adjustment
capabilities is incorporated. Continuous tuning of about
7 GHz mode-hop free tuning has been achieved, which
is sufficient for frequency locking the laser to an atomic
line.

FIG. 1: Litman-Metcalf external cavity laser diode config-
uration. The diffraction grating is stationary, therefore the
location of the zeroth order does not change. A tuning mirror
is used to feed back the first order into the laser diode for
stabilization and tuning.

Injection locking

After locking the master diode laser to a resonant fre-
quency, it is used to injection lock a higher power slave
laser. For laser cooling and trapping, multiple beams of
nearly the same frequency are needed. The master laser
supplies an output power of about 8 mW, measured from
the output of the laser box, when locked to a lithium res-
onance. Nearly 60 mW can be obtained, however, from a
diode laser that is free running with a wavelength within

FIG. 2: Schematic of injection locking setup. A half-wave
plate is incorporated in order to couple the intensity of the
master light in the polarization direction of the slave laser.
The first polarizer on the optical isolator is removed to avoid
unwanted feedback to either the master or slave laser.

a few nanometers of the master using a simple injection
locking technique. For our slave laser, we use an Op-
next (HL6555G:G2) laser diode with a maximum output
power of 60 mW and a free running wavelength of 664 ±

2 nm. Injection locking is a successful way to obtain the
needed identical light sources for trapping free atoms,
because one can achieve high output power while still
maintaining the needed frequency lock and stability.

Consider a single-frequency laser operating at a fre-
quency ω0 with an output power I0. A weak single-
frequency beam with frequency ω1 and I1 is incident on
the high-power laser cavity’s output coupler. The way
the weak beam is amplified depends on its power and
frequency. Even though the high-power laser is produc-
ing maximum power at ω0, there is still gain at ω1. This
is due to the fact that the high-power laser operates be-
low threshold for the weak beam, and an oscillator below
threshold acts like a regenerative amplifier. When ω0 is
about equal to ω1, the regenerative gain for the electric
field of a weak beam reflecting from the higher-power
laser cavity can be written as g(w1) = γe

i∗(ω0−ω1)
, where

γe is the cold-cavity decay rate. The weak input beam,
therefore, is rapidly amplified as ω1 approaches ω0. When
it begins to rival the output intensity I0, frequency of the
laser beam changes from ω0 to ω1 [6].

The injection locking schematic used is shown in FIG.
2. The master laser light is sent through two optical iso-
lators to prevent feedback from the light of the slave or
reflections from spectroscopy that can affect the stabil-
ity of the master. A half-wave plate is incorporated to
control how much of the master light goes to the slave
for injection locking (about 2.0 mW). The horizontal po-
larization, therefore, passes directly through the first po-
larizing beam splitter (PBS) to be used for spectroscopy
and frequency locking the master to the atomic line. The
vertical polarization goes through another arm by way of
the PBS, and is sent toward the slave laser through a
second PBS.
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The beam that is sent toward the slave laser goes
through a third optical isolator with the first polarizer re-
moved. We use a lens on each side of this isolator to focus
the light into the isolator and recollimate it. Each lens is
about 200mm in order to maintain the beam size. The
vertically polarized light from the master is then rotated
by the second polarizer of the isolator so that it is now
horizontally polarized. Then, a second half-wave plate is
encountered, which is adjusted to couple the intensity in
the polarization direction of the slave laser. When the po-
larization of the master laser is crossed with the preferred
direction of polarization of the slave laser, injection lock-
ing no longer occurs, so by rotating the half-wave plate,
the injected intensity can be varied without needing to
change the current of the master laser or use attenuating
filters. Finally, two fine adjustment mirrors are used to
optimize the alignment of the incoming master beam and
therefore the output beam of the slave. Upon leaving the
slave laser box, the polarization of the output beam of
the slave is rotated to horizontal by the half-wave plate.
The polarizer on the isolator then rotates the polariza-
tion again, so that the slave output beam is vertically po-
larized upon leaving the injection locking setup. Using
this configuration, only the vertically polarized master
light can enter the injection locking setup, and only the
horizontally polarized slave light can leave. This avoids
unwanted retro-reflections to both the slave and master.

For efficient injection locking, the injected beam needs
to be mode-matched (i.e. same beam parameters) with
the slave laser beam. If the two lasers are the same type,
this can be achieved by orienting the laser junctions par-
allel to each other by careful collimation of both lasers.
As such, the slave laser beam propagates collinearly with
the injected beam but in the opposite direction [3].

As a diagnostic, we use a stray reflection of the slave
light coupled into a low resolution spectrometer so that
we can monitor whether or not the slave is injection
locked. We also have two flip-mirrors incorporated into
the set-up. When these mirrors are inserted, the light is
sent through an optical fiber to a sub-picometer resolu-
tion wavemeter, in which the wavelength of the light can
be measured; one mirror sends the master light and one
sends the slave light. Figure 3 shows the spectrum of the
slave laser with and without injection locking.

An important note is that injection locking does not
work for all possible currents of the slave laser. Also,
there are different regions of injection locking, the lowest
being when the injected intensity of the master laser is
large enough to overcome the slave’s preferred gain. In
this region, the locking does not depend on the position
of either the master or slave lasers longitudinal modes. In
regions where the slave laser gain is high, the regions of
injection locking depend on the relative positions of the
two laser’s longitudinal modes. Because of this, the slave
laser temperature must be changed (therefore shifting the
longitudinal modes) in order to compensate for different

FIG. 3: Slave laser spectrum with and without injection lock-
ing using OceanOptics spectrometer with resolution ± .25 nm.
Slave laser operates at 47.6◦ C and 130 mA ± 2 mW, with
an output power of approximately 61 mW. (1)Free running
slave laser spectrum. (2) Injection-locked spectrum of slave
laser. Incomplete injection locking was experienced, which
was unresolvable with the OceanOptics spectrometer.

slave laser currents for injection to work [7]. We found
that with 2.0 mW of injection power from the master
laser, a slave temperature of 47.6◦ C and an operating
current of around 130 mA ± 2 mA was sufficient for
injection locking.

Further Injection Locking Improvements

In our attempts for a magneto-optical trap using this
set-up, we realized that while our OceanOptics spectrom-
eter (USB4000) indicated that injection locking was oc-
curring, as in FIG. 3, the injection locking was incom-
plete. We noticed this through observation of the slowing
laser beam, which was supposedly locked to the master.
The slowing beam counterpropogates the atomic beam
in a magneto-optical trap. The purpose of this beam
is to decelerate the atomic beam and thus enhance the
flux of slow atoms that can be trapped. The frequency
of the slowing beam determines the final atomic velocity
of the slowed atoms in a magneto-optical trap [2]. It is
necessary that atoms are slowed in order to be captured
by a MOT, however, if the final velocity is unnecessarily
small, the flux of slow atoms into the trapping volume
could be reduced because of an enlarged divergence of
the transversely hot atomic beam [2].

In our initial attempts at trapping atoms, we saw no
fluorescence in the atomic beam. We, therefore, had rea-
son to believe that the slowing beam was not fulfilling its
purpose and slowing atoms. We would expect that when
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the slowing beam is blocked, no atoms are captured [2].

As we were troubleshooting the ineffectiveness of the
slowing beam, we slightly adjusted the current of the
slave laser by about 0.5 mA, which caused the atomic
beam to fluoresce. A change in the injection current of
the slave laser results in a change in the frequency of
the slave laser as well. As a result of this observation,
we could conclude that only a portion of the slave light
was locked to the master, therefore the injection lock is
incomplete.

In order to ensure that the slave laser is operating at
the exact frequency of the master, a further diagnostic is
needed. To do this, we plan to measure the beat signal
between the master and slave. This can be accomplished
using a high speed detector and an RF spectrum ana-
lyzer. The quality of coupling between the lasers is de-
termined by the frequency width of the signal. A sharp
peak, with a small full-width half maximum, indicates a
strong phase correlation between the slave and the master
when the slave is injection locked [3]. Another solution is
to avoid the slave altogether, and introduce a commercial
laser amplifier to the setup.

Frequency Shifting

The master laser is locked to the 2S 1

2

(F = 2) →
2P 3

2

(F = 2) transition, which corresponds to a wave-

length of 670.9620 nm [10], as seen in Figure 4. In order
to compensate for the Doppler shift and the detuning
that occurs in a MOT, one must use beams with slightly
different frequency shifts of comparable strength. In our
experiment, we use acousto-optical modulators (AOMs)
to obtain the frequency detuning needed.

Electrons that are excited by the locking frequency
in the MOT have the potential to relax back to the
2S 1

2

(F = 1) subshell, instead of the original subshell. To
account for this, we incorporate “optical pumping”. We
accomplish this by frequency shifting the master light to
a nearby transition, which corresponds to a wavelength
of 670.9608 nm [10], a frequency difference of 813.1 MHz.
This shifted beam serves to pump the electrons back into
the cycle.

To calculate the detunings needed for each beam, we
use Eq.1

δ = ω − ωr +
ω

c
v (1)

where ω is the master laser frequency, ωr is the fre-
quency of the resonance to which the master laser is
locked, v is the velocity of the atoms addressed, c is the
speed of light, and δ is the detuning due to the Zeeman
splitting effect. The ω

c
v term, therefore, is the frequency

shift due to the Doppler shift.

FIG. 4: Relevant energy levels in 6,7Li. Each hyperfine level
is labeled with the value of its quantum number F. The fre-
quency detunings from the master laser lock for the trapping
and slowing beams are labeled. Figure created by C.W. Hoyt.
[D. Das, and V. Natarajan,“Absolute frequency measurement
of lithium D lines,” Physical Review A, 75, 052508 (2007)].

For our MOT set-up, we incorporate both a trapping
and slowing beam. The trapping beam must have both
transition frequencies present in order to effectively ad-
dress and slow atoms. Because of the Doppler shift, the
trapping beam will need to be red detuned from the res-
onant master light. For our set-up, a trapping beam
detuning of 25 MHz is used, which is approximately 4Γ,
where Γ is the transition linewidth of 5.8 MHz. The
slowing beam must also have both frequencies. Because
the slowing beam counterpropatates the atomic beam, a
greater red detuning is needed. A detuning of 71.5 MHz
from the master’s locked frequency is used, which corre-
sponds to approximately 12Γ.

The optical set-up used to obtain the detunings needed
for our MOT is shown in FIG. 5. The master light that
is not used for injection locking is sent through an EOM
that creates frequency sidebands that are used in lock-
ing to the atomic transition. Then, a second AOM is
encountered, providing an offset detuning of 85 MHz for
the slowing and trapping beams. We obtained a diffrac-
tion efficiency of approximately 85% through this AOM.

The output beam of the slave laser is horizontally po-
larized and follows the same path as the master. The
slave beam then encounters a half wave plate followed
by a PBS. The half wave plate is rotated to control the
percentage of light that is sent into the pumping beam
setup. The vertically polarized light is sent to the pump-
ing beam set up, in which AOM2 shifts the frequency
of the beam by 406.5 MHz. A quarter waveplate is in-
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FIG. 5: Complete optical set up prior to magneto-optical trap alignment. The frequency shifts needed for the slowing and
trapping beams in order to compensate for the Doppler shift and the detunings that occur in a MOT are accomplished using
acousto-optical modulators. Injection locking of slave laser and set up for the trapping, slowing, and locking beam are shown.

serted after AOM2, which circularly polarizes the light.
The beam then encounters a mirror, and is retroreflected
back through the quarter waveplate. The light therefore
becomes linearly polarized again, but is now rotated 90
degrees with respect to the light before AOM2. This hor-
izontally polarized light then passes through AOM2 for
a second time, for a total frequency shift of 813.1 MHz.
We were able to obtain about 35% diffraction efficiency
after both passes through this AOM.

The light that was not sent to the pumping setup is
horizontally polarized until it reaches another half wave-
plate, where it becomes vertically polarized. The hor-
izontally polarized light that is shifted in the pumping
setup is then recombined with the unshifted, vertically
polarized light in this PBS, and the combined beam con-
tinues to the setup for the slowing and trapping beams.

A half-wave plate is incorporated after this PBS, which
allows us to send both shifted and unshifted light to both
the trapping and slowing setup by way of another PBS.
The beam that travels directly through the PBS goes
to the trapping beam setup, in which AOM3 shifts the
frequency of the beam by -110 MHz. Because of the
85 Mhz shift of the master laser, the trapping beam is
shifted a total of -25 Mhz from the frequency of the locked
master. Using Eq.1, we have

ω0 + 85MHz + δl − ωt = ω0 − δt (2)

ωt = 85MHz + δl + δt (3)

where δl is the frequency detuning of the locking beam
due to Zeeman splitting, δt is the frequency detuning of
the trapping beam due to Zeeman splitting, and ωt is the
magnitude of the frequency shift applied to the trapping
beam through AOM3. We optimized for a diffraction
efficiency of approximately 85% through this AOM. The
other beam from the PBS goes to the slowing beam setup.
Again using Eq.1, we calculate a frequency shift of -156.5
MHz for AOM4, the slowing beam. This results in a total
shift of 71.5 MHz from the locked master frequency, and
efficiency of about 75%. The trapping and slowing beams
are each coupled into a polarization maintaining optical
fiber and sent to the MOT chamber. In the trapping
fiber, we obtained a input-to-output efficiency of 55%,
and in the slowing fiber, an efficiency of 42%.

Conclusion

We have demonstrated an efficient method of provid-
ing increased power of a stable, locked frequency using
a simple master-slave injection locking technique with
diode lasers. We plan to improve our method of diag-
nosis for assessing the precision and robustness of the
lock using a simple beat frequency analysis of the mas-
ter and slave lasers. In addition, a method for obtaining
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frequency shifted trapping, slowing, and locking beams
to be used for a magneto-optical trap of lithium atoms
is described. With other adjustments made to complete
and optimize the MOT setup, further experiments of 6Li
and 7Li can be attempted.

∗ Bethel University, St. Paul MN, 55112; Electronic ad-
dress: johjam@bethel.edu
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